A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach
The synthesized compound AlCuO2 was established and structurally characterized as the semiconductor. It is noted that there are no available data for theoretical studies, as well as computational studies. For developing theoretical studies on AlCuO2, this study has been designed by computational to...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Federal de Mato Grosso do Sul
2021-03-01
|
Series: | Orbital: The Electronic Journal of Chemistry |
Subjects: | |
Online Access: | https://periodicos.ufms.br/index.php/orbital/article/view/15696 |
_version_ | 1797946875222949888 |
---|---|
author | Md. Tawhidul Islam Ajoy Kumer Unesco Chakma Debashis Howlader |
author_facet | Md. Tawhidul Islam Ajoy Kumer Unesco Chakma Debashis Howlader |
author_sort | Md. Tawhidul Islam |
collection | DOAJ |
description |
The synthesized compound AlCuO2 was established and structurally characterized as the semiconductor. It is noted that there are no available data for theoretical studies, as well as computational studies. For developing theoretical studies on AlCuO2, this study has been designed by computational tools. Applying computational approaches, the electronic structure and optical properties were calculated for the AlCuO2 molecule, and computational tools of the CASTAP code from material studio 8.0 were used in this investigation. First of all, the band gap was recorded by 1.81 eV through the Generalized Gradient Approximation (GGA) based on the Perdew Burke Ernzerhof (PBE), and the density of state and the partial density of state were simulated for evaluating the nature of 3s2, 3p1 orbital for Al, 3d10, 4s1 orbital for Cu, 3d6, 4s2 orbital for Fe and 2s2, 2p4 orbital for O atom of AlCuO2. The optical properties, for instance, absorption, reflection, refractive index, conductivity, dielectric function, and loss function, were calculated. To develop the conducting nature, 4% Fe atom was doped by replacing the Cu atom on AlCuO2. As a result, the band gap was found at 0.00 eV having molecular formulation as AlCu0.96Fe0.04O2, as well as the optical conductivity and optical absorption was soared comparing with parent AlCuO2. From the analysis of the band gap and optical properties in AlCu0.96Fe0.04O2, it can be established that the semiconductor, AlCuO2, has converted into a superconductor due to 4% Fe atom doping.
DOI: http://dx.doi.org/10.17807/orbital.v13i1.1533
|
first_indexed | 2024-04-10T21:19:01Z |
format | Article |
id | doaj.art-dfeb397ce4124354a4aa01de3d0a8107 |
institution | Directory Open Access Journal |
issn | 1984-6428 |
language | English |
last_indexed | 2024-04-10T21:19:01Z |
publishDate | 2021-03-01 |
publisher | Universidade Federal de Mato Grosso do Sul |
record_format | Article |
series | Orbital: The Electronic Journal of Chemistry |
spelling | doaj.art-dfeb397ce4124354a4aa01de3d0a81072023-01-20T10:49:30ZengUniversidade Federal de Mato Grosso do SulOrbital: The Electronic Journal of Chemistry1984-64282021-03-01131A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle ApproachMd. Tawhidul Islam0Ajoy Kumer1Unesco Chakma2Debashis Howlader3Department of Electrical and Electronics Engineering, European University of Bangladesh, GabtoliDepartment of Chemistry, European University of BangladeshDepartment of Electrical and Electronics Engineering, European University of Bangladesh, GabtoliDepartment of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli The synthesized compound AlCuO2 was established and structurally characterized as the semiconductor. It is noted that there are no available data for theoretical studies, as well as computational studies. For developing theoretical studies on AlCuO2, this study has been designed by computational tools. Applying computational approaches, the electronic structure and optical properties were calculated for the AlCuO2 molecule, and computational tools of the CASTAP code from material studio 8.0 were used in this investigation. First of all, the band gap was recorded by 1.81 eV through the Generalized Gradient Approximation (GGA) based on the Perdew Burke Ernzerhof (PBE), and the density of state and the partial density of state were simulated for evaluating the nature of 3s2, 3p1 orbital for Al, 3d10, 4s1 orbital for Cu, 3d6, 4s2 orbital for Fe and 2s2, 2p4 orbital for O atom of AlCuO2. The optical properties, for instance, absorption, reflection, refractive index, conductivity, dielectric function, and loss function, were calculated. To develop the conducting nature, 4% Fe atom was doped by replacing the Cu atom on AlCuO2. As a result, the band gap was found at 0.00 eV having molecular formulation as AlCu0.96Fe0.04O2, as well as the optical conductivity and optical absorption was soared comparing with parent AlCuO2. From the analysis of the band gap and optical properties in AlCu0.96Fe0.04O2, it can be established that the semiconductor, AlCuO2, has converted into a superconductor due to 4% Fe atom doping. DOI: http://dx.doi.org/10.17807/orbital.v13i1.1533 https://periodicos.ufms.br/index.php/orbital/article/view/15696Band gapDOSElectronic structureFe dopingOptical propertiesPDOS |
spellingShingle | Md. Tawhidul Islam Ajoy Kumer Unesco Chakma Debashis Howlader A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach Orbital: The Electronic Journal of Chemistry Band gap DOS Electronic structure Fe doping Optical properties PDOS |
title | A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach |
title_full | A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach |
title_fullStr | A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach |
title_full_unstemmed | A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach |
title_short | A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach |
title_sort | computational investigation of electronic structure and optical properties of alcuo2 and alcu0 96fe0 04o2 a first principle approach |
topic | Band gap DOS Electronic structure Fe doping Optical properties PDOS |
url | https://periodicos.ufms.br/index.php/orbital/article/view/15696 |
work_keys_str_mv | AT mdtawhidulislam acomputationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT ajoykumer acomputationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT unescochakma acomputationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT debashishowlader acomputationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT mdtawhidulislam computationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT ajoykumer computationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT unescochakma computationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach AT debashishowlader computationalinvestigationofelectronicstructureandopticalpropertiesofalcuo2andalcu096fe004o2afirstprincipleapproach |