Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions
Antimony (Sb) is a toxic metalloid, which has been increasingly used in the brake lining of vehicles, and increased concentrations have been found in soils near abundant traffic. However, since very few investigations of Sb accumulation in urban vegetation have been undertaken there exists a knowled...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-02-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844023007557 |
_version_ | 1828000800834584576 |
---|---|
author | Håkan Pleijel Jenny Klingberg Bo Strandberg Henrik Sjöman Göran Wallin |
author_facet | Håkan Pleijel Jenny Klingberg Bo Strandberg Henrik Sjöman Göran Wallin |
author_sort | Håkan Pleijel |
collection | DOAJ |
description | Antimony (Sb) is a toxic metalloid, which has been increasingly used in the brake lining of vehicles, and increased concentrations have been found in soils near abundant traffic. However, since very few investigations of Sb accumulation in urban vegetation have been undertaken there exists a knowledge gap. We studied the concentrations of Sb in leaves and needles of trees in the Gothenburg City area, Sweden. In addition, lead (Pb), also associated with traffic, was investigated. Sb and Pb concentrations of Quercus palustris leaves at seven sites with contrasting traffic intensity varied substantially, correlated with the traffic-related PAH (polycyclic aromatic hydrocarbon) air pollution at the sites and increased during the growing season. Sb but not Pb concentrations were significantly higher in needles of Picea abies and Pinus sylvestris near major roads compared to sites at larger distances. In Pinus nigra needles at two urban streets both Sb and Pb were higher compared to an urban nature park environment, emphasising the role of traffic emissions for these elements. A continued accumulation of Sb and Pb in three years old needles of Pinus nigra, two years old needles of Pinus sylvestris and eleven years old needles of Picea abies was observed. Our data suggest a pronounced link between traffic pollution and Sb accumulation in leaves and needles, where the particles carrying Sb seem not to be transported very far from the source. We also conclude that there exists a strong potential for Sb and Pb bioaccumulation over time in leaves and needles. Implications of these findings are that increased concentrations of toxic Sb and Pb are likely to prevail in environments with high traffic intensity and that Sb can enter the ecological food chain by accumulation in leaves and needles, which is important for the biogeochemical cycling. |
first_indexed | 2024-04-10T06:19:59Z |
format | Article |
id | doaj.art-dff0a87ccdd94fbe880264465640975e |
institution | Directory Open Access Journal |
issn | 2405-8440 |
language | English |
last_indexed | 2024-04-10T06:19:59Z |
publishDate | 2023-02-01 |
publisher | Elsevier |
record_format | Article |
series | Heliyon |
spelling | doaj.art-dff0a87ccdd94fbe880264465640975e2023-03-02T05:02:04ZengElsevierHeliyon2405-84402023-02-0192e13548Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissionsHåkan Pleijel0Jenny Klingberg1Bo Strandberg2Henrik Sjöman3Göran Wallin4University of Gothenburg, Biological and Environmental Sciences, P.O. Box 461, SE-40530, Gothenburg, Sweden; Corresponding author.Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-41319, Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, SE-41319, Gothenburg, SwedenLund University, Division of Occupational and Environmental Medicine, SE-22100, Lund, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, SE-22381 Lund, SwedenGothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-41319, Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, SE-41319, Gothenburg, Sweden; Swedish University of Agricultural Science, Department of Landscape Architecture, Planning and Management, 23053 Alnarp, SwedenUniversity of Gothenburg, Biological and Environmental Sciences, P.O. Box 461, SE-40530, Gothenburg, Sweden; Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, United KingdomAntimony (Sb) is a toxic metalloid, which has been increasingly used in the brake lining of vehicles, and increased concentrations have been found in soils near abundant traffic. However, since very few investigations of Sb accumulation in urban vegetation have been undertaken there exists a knowledge gap. We studied the concentrations of Sb in leaves and needles of trees in the Gothenburg City area, Sweden. In addition, lead (Pb), also associated with traffic, was investigated. Sb and Pb concentrations of Quercus palustris leaves at seven sites with contrasting traffic intensity varied substantially, correlated with the traffic-related PAH (polycyclic aromatic hydrocarbon) air pollution at the sites and increased during the growing season. Sb but not Pb concentrations were significantly higher in needles of Picea abies and Pinus sylvestris near major roads compared to sites at larger distances. In Pinus nigra needles at two urban streets both Sb and Pb were higher compared to an urban nature park environment, emphasising the role of traffic emissions for these elements. A continued accumulation of Sb and Pb in three years old needles of Pinus nigra, two years old needles of Pinus sylvestris and eleven years old needles of Picea abies was observed. Our data suggest a pronounced link between traffic pollution and Sb accumulation in leaves and needles, where the particles carrying Sb seem not to be transported very far from the source. We also conclude that there exists a strong potential for Sb and Pb bioaccumulation over time in leaves and needles. Implications of these findings are that increased concentrations of toxic Sb and Pb are likely to prevail in environments with high traffic intensity and that Sb can enter the ecological food chain by accumulation in leaves and needles, which is important for the biogeochemical cycling.http://www.sciencedirect.com/science/article/pii/S2405844023007557AccumulationGothenburgLeaf ageNeedle agePAHPb |
spellingShingle | Håkan Pleijel Jenny Klingberg Bo Strandberg Henrik Sjöman Göran Wallin Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions Heliyon Accumulation Gothenburg Leaf age Needle age PAH Pb |
title | Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions |
title_full | Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions |
title_fullStr | Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions |
title_full_unstemmed | Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions |
title_short | Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions |
title_sort | accumulation of antimony and lead in leaves and needles of trees the role of traffic emissions |
topic | Accumulation Gothenburg Leaf age Needle age PAH Pb |
url | http://www.sciencedirect.com/science/article/pii/S2405844023007557 |
work_keys_str_mv | AT hakanpleijel accumulationofantimonyandleadinleavesandneedlesoftreestheroleoftrafficemissions AT jennyklingberg accumulationofantimonyandleadinleavesandneedlesoftreestheroleoftrafficemissions AT bostrandberg accumulationofantimonyandleadinleavesandneedlesoftreestheroleoftrafficemissions AT henriksjoman accumulationofantimonyandleadinleavesandneedlesoftreestheroleoftrafficemissions AT goranwallin accumulationofantimonyandleadinleavesandneedlesoftreestheroleoftrafficemissions |