Interleaved Buck Converter for Inductive Wireless Power Transfer in DC–DC Converters

The use of Inductive Wireless Power Transfer (IWPT) varies from low-power applications such as mobile phones and tablets chargers to high-power electric vehicles chargers. DC–DC converters are used in IWPT systems, and their design needs to consider the demand of high efficiency in the power transfe...

Full description

Bibliographic Details
Main Authors: Marco Carbajal-Retana, Leobardo Hernandez-Gonzalez, Jazmin Ramirez-Hernandez, Juan Gerardo Avalos-Ochoa, Pedro Guevara-Lopez, Igor Loboda, Luis Antonio Sotres-Jara
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/6/949
Description
Summary:The use of Inductive Wireless Power Transfer (IWPT) varies from low-power applications such as mobile phones and tablets chargers to high-power electric vehicles chargers. DC–DC converters are used in IWPT systems, and their design needs to consider the demand of high efficiency in the power transfer. In this paper, a DC–DC power converter for IWPT is proposed. Its topology uses a DC–AC converter in the transmitter circuit and an AC–DC converter in the receptor. The transmitter has an interleaved coupled-Buck converter that integrates two Buck converters connected to a half inverter bridge and a parallel resonant load. The control strategy implemented for the semiconductor switching devices allows two operating modes to obtain a sinusoidal output voltage with a low distortion that makes it suitable in high-efficiency power transfer systems. To obtain a DC output voltage, a full wave bridge rectifier is used in the receptor circuit. The proposed topology and the control strategy are validated with simulation and experimental results for a 15 W prototype.
ISSN:2079-9292