Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB

ABSTRACT Clostridioides difficile is a Gram-positive bacterium that can cause mild to severe diarrhea, inflammation, and colonic tissue damage in animal hosts. Symptoms of the disease can be attributed to the activity of toxin B (TcdB) secreted by C. difficile during infection. TcdB can engage multi...

Full description

Bibliographic Details
Main Authors: Kevin O. Childress, Caroline S. Cencer, Matthew J. Tyska, D. Borden Lacy
Format: Article
Language:English
Published: American Society for Microbiology 2023-10-01
Series:mBio
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mbio.01857-23
_version_ 1797619721377415168
author Kevin O. Childress
Caroline S. Cencer
Matthew J. Tyska
D. Borden Lacy
author_facet Kevin O. Childress
Caroline S. Cencer
Matthew J. Tyska
D. Borden Lacy
author_sort Kevin O. Childress
collection DOAJ
description ABSTRACT Clostridioides difficile is a Gram-positive bacterium that can cause mild to severe diarrhea, inflammation, and colonic tissue damage in animal hosts. Symptoms of the disease can be attributed to the activity of toxin B (TcdB) secreted by C. difficile during infection. TcdB can engage multiple host cell surface receptors in vitro; however, little is known about where these receptors localize on colonic tissue and how these interactions promote disease. Here, we used immunofluorescence microscopy to first visualize TcdB interactions with two of the reported receptors, CSPG4 and Nectin-3, on cells in vitro. In cells expressing both receptors, we found that TcdB preferentially interacts with CSPG4. In moving to host colonic tissue, we observed novel localization of Nectin-3 within the brush border of epithelial cells and CSPG4 localization at epithelial cell junctions. The unexpected junctional CSPG4 signal led us to the hypothesis that the signal could represent a soluble form of the CSPG4 extracellular domain (ECD) being shed from fibroblasts in the underlying stromal layer of the tissue. To test, we set up a co-culture of epithelial cells and fibroblasts separated by transwell inserts. We observed CSPG4-ECD shed into the media of cultured fibroblasts and an accumulation in epithelial cells following co-culture. We also found that soluble CSPG4-ECD present in the conditioned media from fibroblasts can potentiate TcdB-mediated cytopathic responses in epithelial cells lacking CSPG4 expression. Based on these observations, we propose that Nectin-3 can facilitate the binding of TcdB at the epithelial surface and that a soluble form of CSPG4 derived from stromal cells can contribute to TcdB intoxication of epithelial cells in vivo. Importance Toxin B (TcdB) is a major virulence factor of Clostridioides difficile, a Gram-positive pathogen that is a leading cause of hospital-acquired diarrhea. While previous studies have established that TcdB can engage multiple cell surface receptors in vitro, little is known about how these interactions promote disease and where these receptors localize on colonic tissue. Here, we used immunofluorescence microscopy to visualize Nectin-3 and CSPG4 on tissue, revealing unexpected localization of both receptors on colonic epithelial cells. We show that Nectin-3, which was previously characterized as an adherens junction protein, is also localized to the brush border of colonocytes. Staining for CSPG4 revealed that it is present along epithelial cell junctions, suggesting that it is shed by fibroblasts along the crypt-surface axis. Collectively, our study provides new insights into how TcdB can gain access to the receptors Nectin-3 and CSPG4 to intoxicate colonic epithelial cells.
first_indexed 2024-03-11T08:30:53Z
format Article
id doaj.art-dff8cf7d0a5a476c9c8025648277e4fe
institution Directory Open Access Journal
issn 2150-7511
language English
last_indexed 2024-03-11T08:30:53Z
publishDate 2023-10-01
publisher American Society for Microbiology
record_format Article
series mBio
spelling doaj.art-dff8cf7d0a5a476c9c8025648277e4fe2023-11-16T21:48:01ZengAmerican Society for MicrobiologymBio2150-75112023-10-0114510.1128/mbio.01857-23Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdBKevin O. Childress0Caroline S. Cencer1Matthew J. Tyska2D. Borden Lacy3Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine , Nashville, Tennessee, USADepartment of Cell and Development Biology, Vanderbilt University School of Medicine , Nashville, Tennessee, USADepartment of Cell and Development Biology, Vanderbilt University School of Medicine , Nashville, Tennessee, USADepartment of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine , Nashville, Tennessee, USAABSTRACT Clostridioides difficile is a Gram-positive bacterium that can cause mild to severe diarrhea, inflammation, and colonic tissue damage in animal hosts. Symptoms of the disease can be attributed to the activity of toxin B (TcdB) secreted by C. difficile during infection. TcdB can engage multiple host cell surface receptors in vitro; however, little is known about where these receptors localize on colonic tissue and how these interactions promote disease. Here, we used immunofluorescence microscopy to first visualize TcdB interactions with two of the reported receptors, CSPG4 and Nectin-3, on cells in vitro. In cells expressing both receptors, we found that TcdB preferentially interacts with CSPG4. In moving to host colonic tissue, we observed novel localization of Nectin-3 within the brush border of epithelial cells and CSPG4 localization at epithelial cell junctions. The unexpected junctional CSPG4 signal led us to the hypothesis that the signal could represent a soluble form of the CSPG4 extracellular domain (ECD) being shed from fibroblasts in the underlying stromal layer of the tissue. To test, we set up a co-culture of epithelial cells and fibroblasts separated by transwell inserts. We observed CSPG4-ECD shed into the media of cultured fibroblasts and an accumulation in epithelial cells following co-culture. We also found that soluble CSPG4-ECD present in the conditioned media from fibroblasts can potentiate TcdB-mediated cytopathic responses in epithelial cells lacking CSPG4 expression. Based on these observations, we propose that Nectin-3 can facilitate the binding of TcdB at the epithelial surface and that a soluble form of CSPG4 derived from stromal cells can contribute to TcdB intoxication of epithelial cells in vivo. Importance Toxin B (TcdB) is a major virulence factor of Clostridioides difficile, a Gram-positive pathogen that is a leading cause of hospital-acquired diarrhea. While previous studies have established that TcdB can engage multiple cell surface receptors in vitro, little is known about how these interactions promote disease and where these receptors localize on colonic tissue. Here, we used immunofluorescence microscopy to visualize Nectin-3 and CSPG4 on tissue, revealing unexpected localization of both receptors on colonic epithelial cells. We show that Nectin-3, which was previously characterized as an adherens junction protein, is also localized to the brush border of colonocytes. Staining for CSPG4 revealed that it is present along epithelial cell junctions, suggesting that it is shed by fibroblasts along the crypt-surface axis. Collectively, our study provides new insights into how TcdB can gain access to the receptors Nectin-3 and CSPG4 to intoxicate colonic epithelial cells.https://journals.asm.org/doi/10.1128/mbio.01857-23toxin-receptor interactionClostridium difficilepolarized epithelia
spellingShingle Kevin O. Childress
Caroline S. Cencer
Matthew J. Tyska
D. Borden Lacy
Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
mBio
toxin-receptor interaction
Clostridium difficile
polarized epithelia
title Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
title_full Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
title_fullStr Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
title_full_unstemmed Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
title_short Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB
title_sort nectin 3 and shed forms of cspg4 can serve as epithelial cell receptors for clostridioides difficile tcdb
topic toxin-receptor interaction
Clostridium difficile
polarized epithelia
url https://journals.asm.org/doi/10.1128/mbio.01857-23
work_keys_str_mv AT kevinochildress nectin3andshedformsofcspg4canserveasepithelialcellreceptorsforclostridioidesdifficiletcdb
AT carolinescencer nectin3andshedformsofcspg4canserveasepithelialcellreceptorsforclostridioidesdifficiletcdb
AT matthewjtyska nectin3andshedformsofcspg4canserveasepithelialcellreceptorsforclostridioidesdifficiletcdb
AT dbordenlacy nectin3andshedformsofcspg4canserveasepithelialcellreceptorsforclostridioidesdifficiletcdb