Aliphatic Anion Exchange Ionomers with Long Spacers and No Ether Links by Ziegler–Natta Polymerization: Properties and Alkaline Stability

In this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler–Natta method, employing t...

Full description

Bibliographic Details
Main Authors: Raul Andres Becerra-Arciniegas, Riccardo Narducci, Gianfranco Ercolani, Luca Pasquini, Philippe Knauth, Maria Luisa Di Vona
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/2/395
Description
Summary:In this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler–Natta method, employing the complex ZrCl<sub>4</sub> (THF)<sub>2</sub> as a catalyst. A certain degree of crosslinking with N,N,N′,N′-tetramethylethylenediamine (TEMED) was introduced with the aim of avoiding excessive swelling in water. The resulting anion exchange polymers were characterized by <sup>1</sup>H-NMR, FTIR, TGA, and ion exchange capacity (IEC) measurements. The ionomers showed good alkaline stability; after 72 h of treatment in 2 M KOH at 80 °C the remaining IEC of 76% confirms that ionomers without ether bonds are less sensitive to a S<sub>N</sub>2 attack and suggests the possibility of their use as a binder in a fuel cell electrode formulation. The ionomers were also blended with polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde. The water uptake of the blend membranes was around 110% at 25 °C. The ionic conductivity at 25 °C in the OH<sup>−</sup> form was 29.5 mS/cm.
ISSN:1420-3049