Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network

Theprimary production quantity depends on the vertical distribution of chlorophyll concentration in the water column. The chlorophyll maximum value not always observed near or at the sea surface, but sometimes lies deeper than bottom of the euphotic zone. In this case, the ocean color sensors cannot...

Full description

Bibliographic Details
Main Author: Achmad Fachruddin Syah
Format: Article
Language:English
Published: Lembaga Penelitian dan Pengabdian kepada Masyarakat 2009-10-01
Series:Rekayasa
Online Access:https://journal.trunojoyo.ac.id/rekayasa/article/view/2203
_version_ 1818025166722039808
author Achmad Fachruddin Syah
author_facet Achmad Fachruddin Syah
author_sort Achmad Fachruddin Syah
collection DOAJ
description Theprimary production quantity depends on the vertical distribution of chlorophyll concentration in the water column. The chlorophyll maximum value not always observed near or at the sea surface, but sometimes lies deeper than bottom of the euphotic zone. In this case, the ocean color sensors cannot measure the chlorophyll maximum value. A shifted Gauss model has been proposed to describe the variation  of the chlorophyll-a (Chl-a) profile which consists offour parameters, i.e. background biomass (Br)1 maximum depth of Chl-a (Zm), total biomass zn the peak (h), and measurenment of the thickness or vertical scale of the peak (o). However, these parameters are not easy to be determined directlyfrom satellite data. therefore, in these research, anANN methodology is used. Using in-situ data 1962 to 1985 in Banda Sea, the above parameters are calculated to derive the Chl-a concentration, sea surface temperature, mixed layer depth, latitude, longi_tude, and season. The total of 53 profiles of Chl-a and temperature are used for ANN. The correlation coefficient of these parameters are 0.852 (B,J, 0.670 (h), 0.983 (d) and 0.990 (Zm) respectively. After comparing with in-situ data and AN!'J model, the result show not good enough agreement relatively. Keywords: Chlorophyll-a (Chl-a), Vertical Structure, Artificial Neural Networks (ANN)
first_indexed 2024-12-10T04:11:48Z
format Article
id doaj.art-e0029a28e1324f2996611ee028125b70
institution Directory Open Access Journal
issn 0216-9495
2502-5325
language English
last_indexed 2024-12-10T04:11:48Z
publishDate 2009-10-01
publisher Lembaga Penelitian dan Pengabdian kepada Masyarakat
record_format Article
series Rekayasa
spelling doaj.art-e0029a28e1324f2996611ee028125b702022-12-22T02:02:43ZengLembaga Penelitian dan Pengabdian kepada MasyarakatRekayasa0216-94952502-53252009-10-012215316310.21107/rekayasa.v2i2.22031804Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural NetworkAchmad Fachruddin Syah0Universitas Trunojoyo MaduraTheprimary production quantity depends on the vertical distribution of chlorophyll concentration in the water column. The chlorophyll maximum value not always observed near or at the sea surface, but sometimes lies deeper than bottom of the euphotic zone. In this case, the ocean color sensors cannot measure the chlorophyll maximum value. A shifted Gauss model has been proposed to describe the variation  of the chlorophyll-a (Chl-a) profile which consists offour parameters, i.e. background biomass (Br)1 maximum depth of Chl-a (Zm), total biomass zn the peak (h), and measurenment of the thickness or vertical scale of the peak (o). However, these parameters are not easy to be determined directlyfrom satellite data. therefore, in these research, anANN methodology is used. Using in-situ data 1962 to 1985 in Banda Sea, the above parameters are calculated to derive the Chl-a concentration, sea surface temperature, mixed layer depth, latitude, longi_tude, and season. The total of 53 profiles of Chl-a and temperature are used for ANN. The correlation coefficient of these parameters are 0.852 (B,J, 0.670 (h), 0.983 (d) and 0.990 (Zm) respectively. After comparing with in-situ data and AN!'J model, the result show not good enough agreement relatively. Keywords: Chlorophyll-a (Chl-a), Vertical Structure, Artificial Neural Networks (ANN)https://journal.trunojoyo.ac.id/rekayasa/article/view/2203
spellingShingle Achmad Fachruddin Syah
Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
Rekayasa
title Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
title_full Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
title_fullStr Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
title_full_unstemmed Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
title_short Pendugaan Konsentrasi Klorofil-A Secara Vertikal dengan Neural Network
title_sort pendugaan konsentrasi klorofil a secara vertikal dengan neural network
url https://journal.trunojoyo.ac.id/rekayasa/article/view/2203
work_keys_str_mv AT achmadfachruddinsyah pendugaankonsentrasiklorofilasecaravertikaldenganneuralnetwork