Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools

In vivo 1-photon (1p) calcium imaging is an increasingly prevalent method in behavioral neuroscience. Numerous analysis pipelines have been developed to improve the reliability and scalability of pre-processing and ROI extraction for these large calcium imaging datasets. Despite these advancements i...

Full description

Bibliographic Details
Main Authors: Lina M. Tran, Andrew J. Mocle, Adam I. Ramsaran, Alexander D. Jacob, Paul W. Frankland, Sheena A. Josselyn
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-07-01
Series:Frontiers in Neural Circuits
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fncir.2020.00042/full
_version_ 1818240611486007296
author Lina M. Tran
Lina M. Tran
Lina M. Tran
Andrew J. Mocle
Andrew J. Mocle
Adam I. Ramsaran
Adam I. Ramsaran
Alexander D. Jacob
Alexander D. Jacob
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
author_facet Lina M. Tran
Lina M. Tran
Lina M. Tran
Andrew J. Mocle
Andrew J. Mocle
Adam I. Ramsaran
Adam I. Ramsaran
Alexander D. Jacob
Alexander D. Jacob
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
author_sort Lina M. Tran
collection DOAJ
description In vivo 1-photon (1p) calcium imaging is an increasingly prevalent method in behavioral neuroscience. Numerous analysis pipelines have been developed to improve the reliability and scalability of pre-processing and ROI extraction for these large calcium imaging datasets. Despite these advancements in pre-processing methods, manual curation of the extracted spatial footprints and calcium traces of neurons remains important for quality control. Here, we propose an additional semi-automated curation step for sorting spatial footprints and calcium traces from putative neurons extracted using the popular constrained non-negative matrixfactorization for microendoscopic data (CNMF-E) algorithm. We used the automated machine learning (AutoML) tools TPOT and AutoSklearn to generate classifiers to curate the extracted ROIs trained on a subset of human-labeled data. AutoSklearn produced the best performing classifier, achieving an F1 score >92% on the ground truth test dataset. This automated approach is a useful strategy for filtering ROIs with relatively few labeled data points and can be easily added to pre-existing pipelines currently using CNMF-E for ROI extraction.
first_indexed 2024-12-12T13:16:12Z
format Article
id doaj.art-e007498310e04931a0f0cf1a763b4490
institution Directory Open Access Journal
issn 1662-5110
language English
last_indexed 2024-12-12T13:16:12Z
publishDate 2020-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neural Circuits
spelling doaj.art-e007498310e04931a0f0cf1a763b44902022-12-22T00:23:24ZengFrontiers Media S.A.Frontiers in Neural Circuits1662-51102020-07-011410.3389/fncir.2020.00042542656Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML ToolsLina M. Tran0Lina M. Tran1Lina M. Tran2Andrew J. Mocle3Andrew J. Mocle4Adam I. Ramsaran5Adam I. Ramsaran6Alexander D. Jacob7Alexander D. Jacob8Paul W. Frankland9Paul W. Frankland10Paul W. Frankland11Paul W. Frankland12Paul W. Frankland13Sheena A. Josselyn14Sheena A. Josselyn15Sheena A. Josselyn16Sheena A. Josselyn17Sheena A. Josselyn18Hospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Physiology, University of Toronto, Toronto, ON, CanadaPostgraduate Affiliates Program, Vector Institute, Toronto, ON, CanadaHospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Physiology, University of Toronto, Toronto, ON, CanadaHospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Psychology, University of Toronto, Toronto, ON, CanadaHospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Psychology, University of Toronto, Toronto, ON, CanadaHospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Physiology, University of Toronto, Toronto, ON, CanadaDepartment of Psychology, University of Toronto, Toronto, ON, CanadaInstitute of Medical Sciences, University of Toronto, Toronto, ON, CanadaChild & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, CanadaHospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, CanadaDepartment of Physiology, University of Toronto, Toronto, ON, CanadaDepartment of Psychology, University of Toronto, Toronto, ON, CanadaInstitute of Medical Sciences, University of Toronto, Toronto, ON, CanadaBrain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, CanadaIn vivo 1-photon (1p) calcium imaging is an increasingly prevalent method in behavioral neuroscience. Numerous analysis pipelines have been developed to improve the reliability and scalability of pre-processing and ROI extraction for these large calcium imaging datasets. Despite these advancements in pre-processing methods, manual curation of the extracted spatial footprints and calcium traces of neurons remains important for quality control. Here, we propose an additional semi-automated curation step for sorting spatial footprints and calcium traces from putative neurons extracted using the popular constrained non-negative matrixfactorization for microendoscopic data (CNMF-E) algorithm. We used the automated machine learning (AutoML) tools TPOT and AutoSklearn to generate classifiers to curate the extracted ROIs trained on a subset of human-labeled data. AutoSklearn produced the best performing classifier, achieving an F1 score >92% on the ground truth test dataset. This automated approach is a useful strategy for filtering ROIs with relatively few labeled data points and can be easily added to pre-existing pipelines currently using CNMF-E for ROI extraction.https://www.frontiersin.org/article/10.3389/fncir.2020.00042/fullcalcium imagingopen-sourcemachine learningmicroendoscopy1-photonCNMF-E
spellingShingle Lina M. Tran
Lina M. Tran
Lina M. Tran
Andrew J. Mocle
Andrew J. Mocle
Adam I. Ramsaran
Adam I. Ramsaran
Alexander D. Jacob
Alexander D. Jacob
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Paul W. Frankland
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Sheena A. Josselyn
Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
Frontiers in Neural Circuits
calcium imaging
open-source
machine learning
microendoscopy
1-photon
CNMF-E
title Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
title_full Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
title_fullStr Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
title_full_unstemmed Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
title_short Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools
title_sort automated curation of cnmf e extracted roi spatial footprints and calcium traces using open source automl tools
topic calcium imaging
open-source
machine learning
microendoscopy
1-photon
CNMF-E
url https://www.frontiersin.org/article/10.3389/fncir.2020.00042/full
work_keys_str_mv AT linamtran automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT linamtran automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT linamtran automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT andrewjmocle automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT andrewjmocle automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT adamiramsaran automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT adamiramsaran automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT alexanderdjacob automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT alexanderdjacob automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT paulwfrankland automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT paulwfrankland automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT paulwfrankland automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT paulwfrankland automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT paulwfrankland automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT sheenaajosselyn automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT sheenaajosselyn automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT sheenaajosselyn automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT sheenaajosselyn automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools
AT sheenaajosselyn automatedcurationofcnmfeextractedroispatialfootprintsandcalciumtracesusingopensourceautomltools