Summary: | Quantum decoherence is crucial to understanding the emergence of the classical world from the underlying quantum reality. Decoherence dynamics are unitary, although they superselect a preferred eigenbasis. Decoherence dynamics result in stable macroscopic, localized, classical-like states. We show that the above-mentioned facts imply the possibility of the existence of decoherence-like dynamics that result in stable macroscopic non-localized non-classical-like states. Being rooted in the fabric of the decoherence theory itself, this property implies environments that steer the decoherence towards, for example, spatial superpositions of macroscopic objects. To demonstrate this, we provide thought-experimental, mathematical and philosophical arguments.
|