Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter

In high load conditions, the boost converter presents some phenomena, such as chattering, chaos, subharmonics, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi&g...

Full description

Bibliographic Details
Main Authors: Simeón Casanova Trujillo, John E. Candelo-Becerra, Fredy E. Hoyos
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/19/9565
_version_ 1827655387404304384
author Simeón Casanova Trujillo
John E. Candelo-Becerra
Fredy E. Hoyos
author_facet Simeón Casanova Trujillo
John E. Candelo-Becerra
Fredy E. Hoyos
author_sort Simeón Casanova Trujillo
collection DOAJ
description In high load conditions, the boost converter presents some phenomena, such as chattering, chaos, subharmonics, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits, which require studying them with the aim of reducing the effects and improving the performance of these electronic devices. In this paper, sufficient conditions for the existence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits are analytically obtained and the system stability is evaluated using eigenvalues of the Jacobian matrix of the Poincaré application. It is demonstrated numerically that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits occur for a broad range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> parameters. The research obtains a particular class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits in the boost converter and a formula that provides sufficient conditions for the existence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits with and without saturation in the duty cycle. In addition, an analysis of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits is performed with a biparametric diagram. The system stability is computed using a variational equation that allows perturbation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits. Moreover, an analytical calculation of the Floquet exponents is performed to determine the stability limit of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbit. Finally, the phenomena found in this research are described according to the behavior of real applications encountered in previous literature.
first_indexed 2024-03-09T22:06:02Z
format Article
id doaj.art-e02ef91d9dbd47dc8a43c3db40d24f11
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-09T22:06:02Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-e02ef91d9dbd47dc8a43c3db40d24f112023-11-23T19:41:45ZengMDPI AGApplied Sciences2076-34172022-09-011219956510.3390/app12199565Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost ConverterSimeón Casanova Trujillo0John E. Candelo-Becerra1Fredy E. Hoyos2Grupo de Investigación Cálculo Científico y Modelamiento Matemático, Universidad Nacional de Colombia, Sede Manizales, Manizales 170003, ColombiaDepartamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, ColombiaDepartamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, ColombiaIn high load conditions, the boost converter presents some phenomena, such as chattering, chaos, subharmonics, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits, which require studying them with the aim of reducing the effects and improving the performance of these electronic devices. In this paper, sufficient conditions for the existence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits are analytically obtained and the system stability is evaluated using eigenvalues of the Jacobian matrix of the Poincaré application. It is demonstrated numerically that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits occur for a broad range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> parameters. The research obtains a particular class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits in the boost converter and a formula that provides sufficient conditions for the existence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits with and without saturation in the duty cycle. In addition, an analysis of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits is performed with a biparametric diagram. The system stability is computed using a variational equation that allows perturbation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbits. Moreover, an analytical calculation of the Floquet exponents is performed to determine the stability limit of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>T</mi></mrow></semantics></math></inline-formula>-periodic orbit. Finally, the phenomena found in this research are described according to the behavior of real applications encountered in previous literature.https://www.mdpi.com/2076-3417/12/19/9565Poincaré mapperiodic orbitsboost convertersystem stabilitybiparametric diagram
spellingShingle Simeón Casanova Trujillo
John E. Candelo-Becerra
Fredy E. Hoyos
Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
Applied Sciences
Poincaré map
periodic orbits
boost converter
system stability
biparametric diagram
title Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
title_full Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
title_fullStr Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
title_full_unstemmed Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
title_short Existence and Stability of <i>nT</i>-Periodic Orbits in the Boost Converter
title_sort existence and stability of i nt i periodic orbits in the boost converter
topic Poincaré map
periodic orbits
boost converter
system stability
biparametric diagram
url https://www.mdpi.com/2076-3417/12/19/9565
work_keys_str_mv AT simeoncasanovatrujillo existenceandstabilityofintiperiodicorbitsintheboostconverter
AT johnecandelobecerra existenceandstabilityofintiperiodicorbitsintheboostconverter
AT fredyehoyos existenceandstabilityofintiperiodicorbitsintheboostconverter