On non-conjugate Coxeter elements in well-generated reflection groups

Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter ele...

Full description

Bibliographic Details
Main Authors: Victor Reiner, Vivien Ripoll, Christian Stump
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2015-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2466/pdf
Description
Summary:Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in $W$ under the action of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element $c$ is a Coxeter element if and only if there exists a simple system $S$ of reflections such that $c$ is the product of the generators in $S$. We moreover deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices of $W$ associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of the Galois group of the field of definition of $W$ on the set of conjugacy classes of Coxeter elements. Finally, we extend several of these properties to Springer's regular elements of arbitrary order.
ISSN:1365-8050