Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes n...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2016-06-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/340 |
_version_ | 1797877910473801728 |
---|---|
author | A. A. Bykov |
author_facet | A. A. Bykov |
author_sort | A. A. Bykov |
collection | DOAJ |
description | Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL) is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM) algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented. |
first_indexed | 2024-04-10T02:24:23Z |
format | Article |
id | doaj.art-e0495e7df5d047798ada131db46873f1 |
institution | Directory Open Access Journal |
issn | 1818-1015 2313-5417 |
language | English |
last_indexed | 2024-04-10T02:24:23Z |
publishDate | 2016-06-01 |
publisher | Yaroslavl State University |
record_format | Article |
series | Моделирование и анализ информационных систем |
spelling | doaj.art-e0495e7df5d047798ada131db46873f12023-03-13T08:07:34ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172016-06-0123325928210.18255/1818-1015-2016-3-259-282297Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional LayerA. A. Bykov0Московский государственный университет им. М.В. Ломоносова, Москва, 119991, Ленинские Горы, 1Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL) is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM) algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented.https://www.mais-journal.ru/jour/article/view/340сингулярно возмущённое уравнениевнутренний переходный слойметод разностных схемасимптотическое разложение |
spellingShingle | A. A. Bykov Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer Моделирование и анализ информационных систем сингулярно возмущённое уравнение внутренний переходный слой метод разностных схем асимптотическое разложение |
title | Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer |
title_full | Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer |
title_fullStr | Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer |
title_full_unstemmed | Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer |
title_short | Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer |
title_sort | numerical scheme for the pseudoparabolic singularly perturbed initial boundary problem with interior transitional layer |
topic | сингулярно возмущённое уравнение внутренний переходный слой метод разностных схем асимптотическое разложение |
url | https://www.mais-journal.ru/jour/article/view/340 |
work_keys_str_mv | AT aabykov numericalschemeforthepseudoparabolicsingularlyperturbedinitialboundaryproblemwithinteriortransitionallayer |