Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer

Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes n...

Full description

Bibliographic Details
Main Author: A. A. Bykov
Format: Article
Language:English
Published: Yaroslavl State University 2016-06-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/340
_version_ 1797877910473801728
author A. A. Bykov
author_facet A. A. Bykov
author_sort A. A. Bykov
collection DOAJ
description Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL) is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM) algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented.
first_indexed 2024-04-10T02:24:23Z
format Article
id doaj.art-e0495e7df5d047798ada131db46873f1
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:24:23Z
publishDate 2016-06-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-e0495e7df5d047798ada131db46873f12023-03-13T08:07:34ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172016-06-0123325928210.18255/1818-1015-2016-3-259-282297Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional LayerA. A. Bykov0Московский государственный университет им. М.В. Ломоносова, Москва, 119991, Ленинские Горы, 1Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL) is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM) algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented.https://www.mais-journal.ru/jour/article/view/340сингулярно возмущённое уравнениевнутренний переходный слойметод разностных схемасимптотическое разложение
spellingShingle A. A. Bykov
Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
Моделирование и анализ информационных систем
сингулярно возмущённое уравнение
внутренний переходный слой
метод разностных схем
асимптотическое разложение
title Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
title_full Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
title_fullStr Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
title_full_unstemmed Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
title_short Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer
title_sort numerical scheme for the pseudoparabolic singularly perturbed initial boundary problem with interior transitional layer
topic сингулярно возмущённое уравнение
внутренний переходный слой
метод разностных схем
асимптотическое разложение
url https://www.mais-journal.ru/jour/article/view/340
work_keys_str_mv AT aabykov numericalschemeforthepseudoparabolicsingularlyperturbedinitialboundaryproblemwithinteriortransitionallayer