A Metallicity Dependence on the Occurrence of Core-collapse Supernovae

Core-collapse supernovae (CCSNe) are widely accepted to be caused by the explosive death of massive stars with initial masses ≳8 M _⊙ . There is, however, a comparatively poor understanding of how properties of the progenitors—mass, metallicity, multiplicity, rotation, etc.—manifest in the resultant...

Full description

Bibliographic Details
Main Authors: Thallis Pessi, Joseph P. Anderson, Joseph D. Lyman, Jose L. Prieto, Lluís Galbany, Christopher S. Kochanek, Sebastian F. Sánchez, Hanindyo Kuncarayakti
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/acf7c6
_version_ 1827806162051923968
author Thallis Pessi
Joseph P. Anderson
Joseph D. Lyman
Jose L. Prieto
Lluís Galbany
Christopher S. Kochanek
Sebastian F. Sánchez
Hanindyo Kuncarayakti
author_facet Thallis Pessi
Joseph P. Anderson
Joseph D. Lyman
Jose L. Prieto
Lluís Galbany
Christopher S. Kochanek
Sebastian F. Sánchez
Hanindyo Kuncarayakti
author_sort Thallis Pessi
collection DOAJ
description Core-collapse supernovae (CCSNe) are widely accepted to be caused by the explosive death of massive stars with initial masses ≳8 M _⊙ . There is, however, a comparatively poor understanding of how properties of the progenitors—mass, metallicity, multiplicity, rotation, etc.—manifest in the resultant CCSN population. Here, we present a minimally biased sample of nearby CCSNe from the All-Sky Automated Survey for Supernovae survey whose host galaxies were observed with integral-field spectroscopy using MUSE at the Very Large Telescope. This data set allows us to analyze the explosion sites of CCSNe within the context of global star formation properties across the host galaxies. We show that the CCSN explosion site oxygen abundance distribution is offset to lower values than the overall H ii region abundance distribution within the host galaxies. We further split the sample at $12+{\mathrm{log}}_{10}({\rm{O}}/{\rm{H}})=8.6$ dex and show that within the subsample of low-metallicity host galaxies, the CCSNe unbiasedly trace the star formation with respect to oxygen abundance, while for the subsample of higher-metallicity host galaxies, they preferentially occur in lower-abundance star-forming regions. We estimate the occurrence of CCSNe as a function of oxygen abundance per unit star formation and show that there is a strong decrease as abundance increases. Such a strong and quantified metallicity dependence on CCSN production has not been shown before. Finally, we discuss possible explanations for our result and show that each of these has strong implications not only for our understanding of CCSNe and massive star evolution but also for star formation and galaxy evolution.
first_indexed 2024-03-11T21:37:17Z
format Article
id doaj.art-e053defa69af4de08374a75f027f9414
institution Directory Open Access Journal
issn 2041-8205
language English
last_indexed 2024-03-11T21:37:17Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj.art-e053defa69af4de08374a75f027f94142023-09-26T21:54:12ZengIOP PublishingThe Astrophysical Journal Letters2041-82052023-01-019552L2910.3847/2041-8213/acf7c6A Metallicity Dependence on the Occurrence of Core-collapse SupernovaeThallis Pessi0https://orcid.org/0000-0001-6540-0767Joseph P. Anderson1https://orcid.org/0000-0003-0227-3451Joseph D. Lyman2https://orcid.org/0000-0002-3464-0642Jose L. Prieto3https://orcid.org/0000-0003-0943-0026Lluís Galbany4https://orcid.org/0000-0002-1296-6887Christopher S. Kochanek5https://orcid.org/0000-0001-6017-2961Sebastian F. Sánchez6https://orcid.org/0000-0001-6444-9307Hanindyo Kuncarayakti7https://orcid.org/0000-0002-1132-1366Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales , Av. Ejército Libertador 441, Santiago, Chile thallis.pessi@mail.udp.cl; European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, ChileEuropean Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile; Millennium Institute of Astrophysics MAS , Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, ChileDepartment of Physics, University of Warwick , Coventry CV4 7AL, UKInstituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales , Av. Ejército Libertador 441, Santiago, Chile thallis.pessi@mail.udp.cl; Millennium Institute of Astrophysics MAS , Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, ChileInstitute of Space Sciences (ICE, CSIC) , Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain; Institut d’Estudis Espacials de Catalunya (IEEC) , E-08034 Barcelona, SpainDepartment of Astronomy, The Ohio State University , 140 West 18th Avenue, Columbus, OH 43210, USA; Center for Cosmology and Astroparticle Physics, The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USAInstituto de Astronomía, Universidad Nacional Autónoma de México , A.P. 70-264, C.P. 04510, México, Ciudad de México, MexicoTuorla Observatory, Department of Physics and Astronomy, FI-20014 University of Turku , Finland; Finnish Centre for Astronomy with ESO (FINCA), FI-20014 University of Turku , FinlandCore-collapse supernovae (CCSNe) are widely accepted to be caused by the explosive death of massive stars with initial masses ≳8 M _⊙ . There is, however, a comparatively poor understanding of how properties of the progenitors—mass, metallicity, multiplicity, rotation, etc.—manifest in the resultant CCSN population. Here, we present a minimally biased sample of nearby CCSNe from the All-Sky Automated Survey for Supernovae survey whose host galaxies were observed with integral-field spectroscopy using MUSE at the Very Large Telescope. This data set allows us to analyze the explosion sites of CCSNe within the context of global star formation properties across the host galaxies. We show that the CCSN explosion site oxygen abundance distribution is offset to lower values than the overall H ii region abundance distribution within the host galaxies. We further split the sample at $12+{\mathrm{log}}_{10}({\rm{O}}/{\rm{H}})=8.6$ dex and show that within the subsample of low-metallicity host galaxies, the CCSNe unbiasedly trace the star formation with respect to oxygen abundance, while for the subsample of higher-metallicity host galaxies, they preferentially occur in lower-abundance star-forming regions. We estimate the occurrence of CCSNe as a function of oxygen abundance per unit star formation and show that there is a strong decrease as abundance increases. Such a strong and quantified metallicity dependence on CCSN production has not been shown before. Finally, we discuss possible explanations for our result and show that each of these has strong implications not only for our understanding of CCSNe and massive star evolution but also for star formation and galaxy evolution.https://doi.org/10.3847/2041-8213/acf7c6SupernovaeCore-collapse supernovaeStellar evolutionGalaxy abundances
spellingShingle Thallis Pessi
Joseph P. Anderson
Joseph D. Lyman
Jose L. Prieto
Lluís Galbany
Christopher S. Kochanek
Sebastian F. Sánchez
Hanindyo Kuncarayakti
A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
The Astrophysical Journal Letters
Supernovae
Core-collapse supernovae
Stellar evolution
Galaxy abundances
title A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
title_full A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
title_fullStr A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
title_full_unstemmed A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
title_short A Metallicity Dependence on the Occurrence of Core-collapse Supernovae
title_sort metallicity dependence on the occurrence of core collapse supernovae
topic Supernovae
Core-collapse supernovae
Stellar evolution
Galaxy abundances
url https://doi.org/10.3847/2041-8213/acf7c6
work_keys_str_mv AT thallispessi ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT josephpanderson ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT josephdlyman ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT joselprieto ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT lluisgalbany ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT christopherskochanek ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT sebastianfsanchez ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT hanindyokuncarayakti ametallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT thallispessi metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT josephpanderson metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT josephdlyman metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT joselprieto metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT lluisgalbany metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT christopherskochanek metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT sebastianfsanchez metallicitydependenceontheoccurrenceofcorecollapsesupernovae
AT hanindyokuncarayakti metallicitydependenceontheoccurrenceofcorecollapsesupernovae