An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production

Lignocellulose consists of cellulose, hemicellulose, and lignin and is a sustainable feedstock for a biorefinery to generate marketable biomaterials like biofuels and platform chemicals. Enormous tons of lignocellulose are obtained from agricultural waste, but a few tons are utilized due to a lack o...

Full description

Bibliographic Details
Main Author: Abidemi Oluranti Ojo
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Fermentation
Subjects:
Online Access:https://www.mdpi.com/2311-5637/9/11/990
Description
Summary:Lignocellulose consists of cellulose, hemicellulose, and lignin and is a sustainable feedstock for a biorefinery to generate marketable biomaterials like biofuels and platform chemicals. Enormous tons of lignocellulose are obtained from agricultural waste, but a few tons are utilized due to a lack of awareness of the biotechnological importance of lignocellulose. Underutilizing lignocellulose could also be linked to the incomplete use of cellulose and hemicellulose in biotransformation into new products. Utilizing lignocellulose in producing value-added products alleviates agricultural waste disposal management challenges. It also reduces the emission of toxic substances into the environment, which promotes a sustainable development goal and contributes to circular economy development and economic growth. This review broadly focused on lignocellulose in the production of high-value products. The aspects that were discussed included: (i) sources of lignocellulosic biomass; (ii) conversion of lignocellulosic biomass into value-added products; and (iii) various bio-based products obtained from lignocellulose. Additionally, several challenges in upcycling lignocellulose and alleviation strategies were discussed. This review also suggested prospects using lignocellulose to replace polystyrene packaging with lignin-based packaging products, the production of crafts and interior decorations using lignin, nanolignin in producing environmental biosensors and biomimetic sensors, and processing cellulose and hemicellulose with the addition of nutritional supplements to meet dietary requirements in animal feeding.
ISSN:2311-5637