A machine vision system for tracking population behavior of zooplankton in small-scale experiments: a case study on salmon lice (Lepeophtheirus salmonis Krøyer, 1838) copepodite population responses to different light stimuli
To achieve efficient and preventive measures against salmon lice (Lepeophtheirus salmonis Krøyer, 1838) infestation, a better understanding of behavioral patterns of the planktonic life stages is key. To investigate light responses in L. salmonis copepodites, a non-intrusive experimental system was...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Company of Biologists
2020-06-01
|
Series: | Biology Open |
Subjects: | |
Online Access: | http://bio.biologists.org/content/9/6/bio050724 |
Summary: | To achieve efficient and preventive measures against salmon lice (Lepeophtheirus salmonis Krøyer, 1838) infestation, a better understanding of behavioral patterns of the planktonic life stages is key. To investigate light responses in L. salmonis copepodites, a non-intrusive experimental system was designed to measure behavioral responses in a 12.5-l volume using machine vision technology and methodology. The experimental system successfully tracked the collective movement patterns of the sea lice population during exposure to different light stimuli emitted from alternating zones in the system. This system could further be used to study behavioral responses to different physical cues of various developmental stages of sea lice or other zooplankton. |
---|---|
ISSN: | 2046-6390 |