Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime

Since the renewable energy thrive, performances and lifetime of photovoltaic (PV) modules have been one of the big international concern. The mechanical bonding between the different components and the materials' choice can significantly improve both performances and lifetime of PV modules. The...

Full description

Bibliographic Details
Main Authors: Meslier Vincent, Chambion Bertrand, Boulanger Amandine, Rahmoun Ichrak, Chabuel Fabien, Bejat Timea
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:EPJ Photovoltaics
Subjects:
Online Access:https://www.epj-pv.org/articles/epjpv/full_html/2023/01/pv220046/pv220046.html
Description
Summary:Since the renewable energy thrive, performances and lifetime of photovoltaic (PV) modules have been one of the big international concern. The mechanical bonding between the different components and the materials' choice can significantly improve both performances and lifetime of PV modules. The manufacturing process plays also a significant part in the modules lifetime [G. Oreski, B. Ottersböck, A. Omazic, Degradation Processes and Mechanisms of Encapsulants, in Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (Elsevier, 2019), pp. 135–152]. This work deals with the controlled cooling part of the manufacturing process. The aim is to characterize its influence on an encapsulant properties, and its influences on modules degradation. This work is a part of improving both performances and lifetime of PV modules. First, the work focuses on describing the real temperature seen by a thermoplastic polyolefin encapsulant during the lamination process. A multi-chamber R&D laminator is used and studied in order to better know the industrial equipment. Results show that the cooling process reduces the time to cool down by a factor of ∼5 compared to natural air convection. Secondly, the material's micro-structure is analysed by Differential Scanning Calorimetry (DSC). The impact of the process is quantified. It does have an influence on the encapsulant crystallites' size distribution without modifying the total crystallinity. Thirdly, the impact of the cooling process on optical properties is investigated. Using spectrophotometry and haze-metry optical characterization, coupled with a known light spectrum, the light intensity coming out from the material is analysed. Results show that the cooling process does not have any influence on transmittance nor reflectance. However, a 34% reduction in the haze factor is recorded when using the industrial laminator cooling process. Fourthly, mechanical bond strength between glass and encapsulant is characterized over ageing. Normalized 10 mm width strips are used to estimate the bond strength. It demonstrates that applying pressure during cooling does not influence the bond strength between glass and encapsulant after 1000 h of damp heat ageing. Finally, impact of the cooling process over ageing on PV modules is discussed. Two accelerating ageing methods, 300 Thermal Cycles and 1000 h damp heat, are used to speed up ageing processes. The electrical components of the PV modules are analysed and used to assess the modules' degradation. Modules manufactured with the cooling process are more sensitive to damp heat after 500 h than modules cooled by natural convection. No significant differences were found in thermal cycling ageing.
ISSN:2105-0716