Research on Residual Life Estimation Method for KMN Steel Based on Nonlinear Ultrasonic Testing

The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationsh...

Full description

Bibliographic Details
Main Authors: Pengfei Wang, Weiqiang Wang, Sanlong Zheng, Zengliang Gao
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/23/11385
Description
Summary:The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationship between the propagation of the micro-cracks inside the material and the nonlinear coefficient was researched by microscopic analysis in the dangerous position of the specimens. As the fatigue cycles increase, the microstructure of the specimen gradually deteriorates and cracks occur, which proves that nonlinear ultrasonic detection can be used to characterize the initiation of micro-cracks in the early fatigue stages of the material and that the nonlinear coefficient <i>β</i> of the material can be used to reflect the fatigue damage degree and fatigue life of the interior of the material. An analysis of the numerical statistics of the fatigue cracks inside the specimens was carried out, and the extreme value of fatigue cracks was calculated using the Gumbel distribution. An empirical formula for the nonlinear coefficient and crack growth size of KMN steel was established and then a method for estimating the fatigue life of KMN steel based on nonlinear ultrasonic testing was proposed.
ISSN:2076-3417