Modified Equations of State for Dark Energy and Observational Limitations
Cosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantic...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/8/4/201 |
_version_ | 1797434186561224704 |
---|---|
author | German S. Sharov Vasily E. Myachin |
author_facet | German S. Sharov Vasily E. Myachin |
author_sort | German S. Sharov |
collection | DOAJ |
description | Cosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> from different sources, and observational manifestations of cosmic microwave background radiation (CMB). We consider scenarios generalizing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula>CDM, <i>w</i>CDM, and Chevallier–Polarski–Linder (CPL) models with nonzero curvature and compare their predictions. The most successful model with the dark energy equation of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi><mn>0</mn></msub><mo>+</mo><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> was studied in detail. These models are interesting in possibly alleviating the Hubble constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> tension, but they achieved a modest success in this direction with the considered observational data. |
first_indexed | 2024-03-09T10:28:38Z |
format | Article |
id | doaj.art-e06db14bc53c44ee9563a2afde8c7696 |
institution | Directory Open Access Journal |
issn | 2218-1997 |
language | English |
last_indexed | 2024-03-09T10:28:38Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Universe |
spelling | doaj.art-e06db14bc53c44ee9563a2afde8c76962023-12-01T21:29:52ZengMDPI AGUniverse2218-19972022-03-018420110.3390/universe8040201Modified Equations of State for Dark Energy and Observational LimitationsGerman S. Sharov0Vasily E. Myachin1Mathematics Department, Tver State University, Sadovyjper. 35, 170002 Tver, RussiaMathematics Department, Tver State University, Sadovyjper. 35, 170002 Tver, RussiaCosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> from different sources, and observational manifestations of cosmic microwave background radiation (CMB). We consider scenarios generalizing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula>CDM, <i>w</i>CDM, and Chevallier–Polarski–Linder (CPL) models with nonzero curvature and compare their predictions. The most successful model with the dark energy equation of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi><mn>0</mn></msub><mo>+</mo><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> was studied in detail. These models are interesting in possibly alleviating the Hubble constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> tension, but they achieved a modest success in this direction with the considered observational data.https://www.mdpi.com/2218-1997/8/4/201cosmological modeldark energyequation of stateHubble constant |
spellingShingle | German S. Sharov Vasily E. Myachin Modified Equations of State for Dark Energy and Observational Limitations Universe cosmological model dark energy equation of state Hubble constant |
title | Modified Equations of State for Dark Energy and Observational Limitations |
title_full | Modified Equations of State for Dark Energy and Observational Limitations |
title_fullStr | Modified Equations of State for Dark Energy and Observational Limitations |
title_full_unstemmed | Modified Equations of State for Dark Energy and Observational Limitations |
title_short | Modified Equations of State for Dark Energy and Observational Limitations |
title_sort | modified equations of state for dark energy and observational limitations |
topic | cosmological model dark energy equation of state Hubble constant |
url | https://www.mdpi.com/2218-1997/8/4/201 |
work_keys_str_mv | AT germanssharov modifiedequationsofstatefordarkenergyandobservationallimitations AT vasilyemyachin modifiedequationsofstatefordarkenergyandobservationallimitations |