Modified Equations of State for Dark Energy and Observational Limitations

Cosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantic...

Full description

Bibliographic Details
Main Authors: German S. Sharov, Vasily E. Myachin
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/8/4/201
_version_ 1797434186561224704
author German S. Sharov
Vasily E. Myachin
author_facet German S. Sharov
Vasily E. Myachin
author_sort German S. Sharov
collection DOAJ
description Cosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> from different sources, and observational manifestations of cosmic microwave background radiation (CMB). We consider scenarios generalizing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula>CDM, <i>w</i>CDM, and Chevallier–Polarski–Linder (CPL) models with nonzero curvature and compare their predictions. The most successful model with the dark energy equation of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi><mn>0</mn></msub><mo>+</mo><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> was studied in detail. These models are interesting in possibly alleviating the Hubble constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> tension, but they achieved a modest success in this direction with the considered observational data.
first_indexed 2024-03-09T10:28:38Z
format Article
id doaj.art-e06db14bc53c44ee9563a2afde8c7696
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-09T10:28:38Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-e06db14bc53c44ee9563a2afde8c76962023-12-01T21:29:52ZengMDPI AGUniverse2218-19972022-03-018420110.3390/universe8040201Modified Equations of State for Dark Energy and Observational LimitationsGerman S. Sharov0Vasily E. Myachin1Mathematics Department, Tver State University, Sadovyjper. 35, 170002 Tver, RussiaMathematics Department, Tver State University, Sadovyjper. 35, 170002 Tver, RussiaCosmological models with variable and modified equations of state for dark energy are confronted with observational data, including Type Ia supernovae, Hubble parameter data <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> from different sources, and observational manifestations of cosmic microwave background radiation (CMB). We consider scenarios generalizing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Λ</mo></semantics></math></inline-formula>CDM, <i>w</i>CDM, and Chevallier–Polarski–Linder (CPL) models with nonzero curvature and compare their predictions. The most successful model with the dark energy equation of state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi><mn>0</mn></msub><mo>+</mo><msub><mi>w</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> was studied in detail. These models are interesting in possibly alleviating the Hubble constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> tension, but they achieved a modest success in this direction with the considered observational data.https://www.mdpi.com/2218-1997/8/4/201cosmological modeldark energyequation of stateHubble constant
spellingShingle German S. Sharov
Vasily E. Myachin
Modified Equations of State for Dark Energy and Observational Limitations
Universe
cosmological model
dark energy
equation of state
Hubble constant
title Modified Equations of State for Dark Energy and Observational Limitations
title_full Modified Equations of State for Dark Energy and Observational Limitations
title_fullStr Modified Equations of State for Dark Energy and Observational Limitations
title_full_unstemmed Modified Equations of State for Dark Energy and Observational Limitations
title_short Modified Equations of State for Dark Energy and Observational Limitations
title_sort modified equations of state for dark energy and observational limitations
topic cosmological model
dark energy
equation of state
Hubble constant
url https://www.mdpi.com/2218-1997/8/4/201
work_keys_str_mv AT germanssharov modifiedequationsofstatefordarkenergyandobservationallimitations
AT vasilyemyachin modifiedequationsofstatefordarkenergyandobservationallimitations