Estimating the Impact of COVID-19 on the PM<sub>2.5</sub> Levels in China with a Satellite-Driven Machine Learning Model
China implemented an aggressive nationwide lockdown procedure immediately after the COVID-19 outbreak in January 2020. As China emerges from the impact of COVID-19 on national economic and industrial activities, it has become the site of a large-scale natural experiment to evaluate the impact of COV...
Päätekijät: | Qiulun Li, Qingyang Zhu, Muwu Xu, Yu Zhao, K. M. Venkat Narayan, Yang Liu |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2021-04-01
|
Sarja: | Remote Sensing |
Aiheet: | |
Linkit: | https://www.mdpi.com/2072-4292/13/7/1351 |
Samankaltaisia teoksia
-
A Satellite-Based High-Resolution (1-km) Ambient PM<sub>2.5</sub> Database for India over Two Decades (2000–2019): Applications for Air Quality Management
Tekijä: Sagnik Dey, et al.
Julkaistu: (2020-11-01) -
Estimating High-Resolution PM<sub>2.5</sub> Concentrations by Fusing Satellite AOD and Smartphone Photographs Using a Convolutional Neural Network and Ensemble Learning
Tekijä: Fei Wang, et al.
Julkaistu: (2022-03-01) -
Imputing Satellite-Derived Aerosol Optical Depth Using a Multi-Resolution Spatial Model and Random Forest for PM<sub>2.5</sub> Prediction
Tekijä: Behzad Kianian, et al.
Julkaistu: (2021-01-01) -
Estimation of Daily Seamless PM<sub>2.5</sub> Concentrations with Climate Feature in Hubei Province, China
Tekijä: Wenjia Ni, et al.
Julkaistu: (2023-07-01) -
Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM<sub>2.5</sub> in China—Implications for PM<sub>2.5</sub> Remote Sensing
Tekijä: Ling Qi, et al.
Julkaistu: (2022-06-01)