The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative

Given an injective closed linear operator <i>A</i> defined in a Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo></mrow></semant...

Full description

Bibliographic Details
Main Authors: Jennifer Bravo, Carlos Lizama
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3540
_version_ 1797478230697967616
author Jennifer Bravo
Carlos Lizama
author_facet Jennifer Bravo
Carlos Lizama
author_sort Jennifer Bravo
collection DOAJ
description Given an injective closed linear operator <i>A</i> defined in a Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo></mrow></semantics></math></inline-formula> and writing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>C</mi><mi>F</mi></mrow></msub><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup></mrow></semantics></math></inline-formula> the Caputo–Fabrizio fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> we show that the unique solution of the abstract Cauchy problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>∗</mo><mo>)</mo></mrow><mspace width="0.166667em"></mspace><msub><mspace width="0.166667em"></mspace><mrow><mi>C</mi><mi>F</mi></mrow></msub><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>A</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <i>f</i> is continuously differentiable, is given by the unique solution of the first order abstract Cauchy problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>B</mi><mi>α</mi></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>F</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>;</mo><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mo>−</mo><msup><mi>A</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where the family of bounded linear operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>B</mi><mi>α</mi></msub></semantics></math></inline-formula> constitutes a Yosida approximation of <i>A</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>→</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>→</mo><mn>1</mn><mo>.</mo></mrow></semantics></math></inline-formula> Moreover, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>∈</mo><mi>ρ</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the spectrum of <i>A</i> is contained outside the closed disk of center and radius equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>1</mn><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></mfrac></semantics></math></inline-formula> then the solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>∗</mo><mo>)</mo></mrow></semantics></math></inline-formula> converges to zero as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>→</mo><mo>∞</mo><mo>,</mo></mrow></semantics></math></inline-formula> in the norm of <i>X</i>, provided <i>f</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>f</mi><mo>′</mo></msup></semantics></math></inline-formula> have exponential decay. Finally, assuming a Lipchitz-type condition on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and its time-derivative) that depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula> we prove the existence and uniqueness of mild solutions for the respective semilinear problem, for all initial conditions in the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>:</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>:</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>=</mo><msup><mi>A</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo><mo>.</mo></mrow></semantics></math></inline-formula>
first_indexed 2024-03-09T21:29:00Z
format Article
id doaj.art-e0715847e3044023b3077dd02fe387ca
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:29:00Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e0715847e3044023b3077dd02fe387ca2023-11-23T21:03:16ZengMDPI AGMathematics2227-73902022-09-011019354010.3390/math10193540The Abstract Cauchy Problem with Caputo–Fabrizio Fractional DerivativeJennifer Bravo0Carlos Lizama1Departamento de Matemática y Estadística, Facultad de Ciencias de la Educación, Universidad San Sebastian, Bellavista 7, Santiago 8420524, ChileDepartamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago 9170124, ChileGiven an injective closed linear operator <i>A</i> defined in a Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo></mrow></semantics></math></inline-formula> and writing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>C</mi><mi>F</mi></mrow></msub><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup></mrow></semantics></math></inline-formula> the Caputo–Fabrizio fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> we show that the unique solution of the abstract Cauchy problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mo>∗</mo><mo>)</mo></mrow><mspace width="0.166667em"></mspace><msub><mspace width="0.166667em"></mspace><mrow><mi>C</mi><mi>F</mi></mrow></msub><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>A</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <i>f</i> is continuously differentiable, is given by the unique solution of the first order abstract Cauchy problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>B</mi><mi>α</mi></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>F</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="4pt"></mspace><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>;</mo><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mo>−</mo><msup><mi>A</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where the family of bounded linear operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>B</mi><mi>α</mi></msub></semantics></math></inline-formula> constitutes a Yosida approximation of <i>A</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>→</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>→</mo><mn>1</mn><mo>.</mo></mrow></semantics></math></inline-formula> Moreover, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>1</mn><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>∈</mo><mi>ρ</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the spectrum of <i>A</i> is contained outside the closed disk of center and radius equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>1</mn><mrow><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></mfrac></semantics></math></inline-formula> then the solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>∗</mo><mo>)</mo></mrow></semantics></math></inline-formula> converges to zero as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>→</mo><mo>∞</mo><mo>,</mo></mrow></semantics></math></inline-formula> in the norm of <i>X</i>, provided <i>f</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>f</mi><mo>′</mo></msup></semantics></math></inline-formula> have exponential decay. Finally, assuming a Lipchitz-type condition on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and its time-derivative) that depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula> we prove the existence and uniqueness of mild solutions for the respective semilinear problem, for all initial conditions in the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">S</mi><mo>:</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>:</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>=</mo><msup><mi>A</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/2227-7390/10/19/3540Caputo–Fabrizio fractional derivativeYosida approximationstabilitylinear and semilinear abstract Cauchy problemone-parameter semigroups of operators
spellingShingle Jennifer Bravo
Carlos Lizama
The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
Mathematics
Caputo–Fabrizio fractional derivative
Yosida approximation
stability
linear and semilinear abstract Cauchy problem
one-parameter semigroups of operators
title The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
title_full The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
title_fullStr The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
title_full_unstemmed The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
title_short The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative
title_sort abstract cauchy problem with caputo fabrizio fractional derivative
topic Caputo–Fabrizio fractional derivative
Yosida approximation
stability
linear and semilinear abstract Cauchy problem
one-parameter semigroups of operators
url https://www.mdpi.com/2227-7390/10/19/3540
work_keys_str_mv AT jenniferbravo theabstractcauchyproblemwithcaputofabriziofractionalderivative
AT carloslizama theabstractcauchyproblemwithcaputofabriziofractionalderivative
AT jenniferbravo abstractcauchyproblemwithcaputofabriziofractionalderivative
AT carloslizama abstractcauchyproblemwithcaputofabriziofractionalderivative