Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning

<p>Predicting tropospheric cloud formation and subsequent nutrient deposition relies on understanding the sources and processes affecting aerosol constituents of the atmosphere that are preserved in cloud water. However, this challenge is difficult to address quantitatively based on the sole u...

Full description

Bibliographic Details
Main Authors: Y. Chang, Y.-L. Zhang, J. Li, C. Tian, L. Song, X. Zhai, W. Zhang, T. Huang, Y.-C. Lin, C. Zhu, Y. Fang, M. F. Lehmann, J. Chen
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/12221/2019/acp-19-12221-2019.pdf
_version_ 1818935494120046592
author Y. Chang
Y. Chang
Y.-L. Zhang
J. Li
C. Tian
L. Song
X. Zhai
W. Zhang
T. Huang
Y.-C. Lin
C. Zhu
Y. Fang
M. F. Lehmann
J. Chen
author_facet Y. Chang
Y. Chang
Y.-L. Zhang
J. Li
C. Tian
L. Song
X. Zhai
W. Zhang
T. Huang
Y.-C. Lin
C. Zhu
Y. Fang
M. F. Lehmann
J. Chen
author_sort Y. Chang
collection DOAJ
description <p>Predicting tropospheric cloud formation and subsequent nutrient deposition relies on understanding the sources and processes affecting aerosol constituents of the atmosphere that are preserved in cloud water. However, this challenge is difficult to address quantitatively based on the sole use of bulk chemical properties. Nitrogenous aerosols, mainly ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00001.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00001.png"/></svg:svg></span></span>) and nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00002.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00002.png"/></svg:svg></span></span>), play a particularly important role in tropospheric cloud formation. While dry and wet (mainly rainfall) deposition of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00003.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00004.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00004.png"/></svg:svg></span></span> are regularly assessed, cloud water deposition is often underappreciated. Here we collected cloud water samples at the summit of Mt. Tai (1545&thinsp;m above sea level) in eastern China during a long-lasting biomass burning (BB) event and simultaneously measured for the first time the isotopic compositions (mean <span class="inline-formula">±1<i>σ</i>)</span> of cloud water nitrogen species (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e1395428ff520520a5981dd9aed2e351"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00005.svg" width="52pt" height="16pt" src="acp-19-12221-2019-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">=</span> <span class="inline-formula">−</span>6.53&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;4.96&thinsp;‰, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d4045393f4b0aaee4ce86f5998bdc274"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00006.svg" width="53pt" height="17pt" src="acp-19-12221-2019-ie00006.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula">−</span>2.35&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;2.00&thinsp;‰, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="59164374d78487dfc15858c8a9ce744c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00007.svg" width="54pt" height="17pt" src="acp-19-12221-2019-ie00007.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 57.80&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;4.23&thinsp;‰), allowing insights into their sources and potential transformation mechanism within the clouds. Large contributions of BB to the cloud water <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00008.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00008.png"/></svg:svg></span></span> (32.9&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;4.6&thinsp;%) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7248c728767abac31fc80ac33e5f4469"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00009.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00009.png"/></svg:svg></span></span> (28.2&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;2.7&thinsp;%) inventories were confirmed through a Bayesian isotopic mixing model, coupled with our newly developed computational quantum chemistry module. Despite an overall reduction in total anthropogenic <span class="inline-formula">NO<sub><i>x</i></sub></span> emission due to effective emission control actions and stricter emission standards for vehicles, the observed cloud <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="acb54909df8c3ab07ce4bd399529fbeb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00010.svg" width="53pt" height="17pt" src="acp-19-12221-2019-ie00010.png"/></svg:svg></span></span> values suggest that <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions from transportation may have exceeded emissions from coal combustion. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="eeb686f43109b6d49268b8b3d08c335a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00011.svg" width="54pt" height="17pt" src="acp-19-12221-2019-ie00011.png"/></svg:svg></span></span> values imply that the reaction of OH with <span class="inline-formula">NO<sub>2</sub></span> is the dominant pathway of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="59e8efc9900af362c4e31d9012378c85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00012.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00012.png"/></svg:svg></span></span> formation (57&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;11&thinsp;%), yet the contribution of heterogeneous hydrolysis of dinitrogen pentoxide was almost as important (43&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;11&thinsp;%). Although the limited sample set used here results in a relatively large uncertainty with regards to the origin of cloud-associated nitrogen deposition, the high concentrations of inorganic nitrogen imply that clouds represent an important source of nitrogen, especially for nitrogen-limited ecosystems in remote areas. Further simultaneous and long-term sampling of aerosol, rainfall, and cloud water is vital for understanding the anthropogenic influence on nitrogen deposition in the study region.</p>
first_indexed 2024-12-20T05:21:03Z
format Article
id doaj.art-e072311178d5429aa8a496033546145a
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-20T05:21:03Z
publishDate 2019-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-e072311178d5429aa8a496033546145a2022-12-21T19:52:01ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-10-0119122211223410.5194/acp-19-12221-2019Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burningY. Chang0Y. Chang1Y.-L. Zhang2J. Li3C. Tian4L. Song5X. Zhai6W. Zhang7T. Huang8Y.-C. Lin9C. Zhu10Y. Fang11M. F. Lehmann12J. Chen13KLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, ChinaKLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, ChinaKey Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, ChinaCAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, ChinaKLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaKLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, ChinaShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, ChinaCAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, ChinaAquatic and Isotope Biogeochemistry, Department of Environmental Sciences, University of Basel, Basel 4056, SwitzerlandShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China<p>Predicting tropospheric cloud formation and subsequent nutrient deposition relies on understanding the sources and processes affecting aerosol constituents of the atmosphere that are preserved in cloud water. However, this challenge is difficult to address quantitatively based on the sole use of bulk chemical properties. Nitrogenous aerosols, mainly ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8aeb386a576ed6c8280ae774099f80e4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00001.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00001.png"/></svg:svg></span></span>) and nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00002.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00002.png"/></svg:svg></span></span>), play a particularly important role in tropospheric cloud formation. While dry and wet (mainly rainfall) deposition of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00003.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00004.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00004.png"/></svg:svg></span></span> are regularly assessed, cloud water deposition is often underappreciated. Here we collected cloud water samples at the summit of Mt. Tai (1545&thinsp;m above sea level) in eastern China during a long-lasting biomass burning (BB) event and simultaneously measured for the first time the isotopic compositions (mean <span class="inline-formula">±1<i>σ</i>)</span> of cloud water nitrogen species (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e1395428ff520520a5981dd9aed2e351"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00005.svg" width="52pt" height="16pt" src="acp-19-12221-2019-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">=</span> <span class="inline-formula">−</span>6.53&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;4.96&thinsp;‰, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d4045393f4b0aaee4ce86f5998bdc274"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00006.svg" width="53pt" height="17pt" src="acp-19-12221-2019-ie00006.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula">−</span>2.35&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;2.00&thinsp;‰, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="59164374d78487dfc15858c8a9ce744c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00007.svg" width="54pt" height="17pt" src="acp-19-12221-2019-ie00007.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 57.80&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;4.23&thinsp;‰), allowing insights into their sources and potential transformation mechanism within the clouds. Large contributions of BB to the cloud water <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00008.svg" width="24pt" height="15pt" src="acp-19-12221-2019-ie00008.png"/></svg:svg></span></span> (32.9&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;4.6&thinsp;%) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7248c728767abac31fc80ac33e5f4469"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00009.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00009.png"/></svg:svg></span></span> (28.2&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;2.7&thinsp;%) inventories were confirmed through a Bayesian isotopic mixing model, coupled with our newly developed computational quantum chemistry module. Despite an overall reduction in total anthropogenic <span class="inline-formula">NO<sub><i>x</i></sub></span> emission due to effective emission control actions and stricter emission standards for vehicles, the observed cloud <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><mi mathvariant="normal">N</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="acb54909df8c3ab07ce4bd399529fbeb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00010.svg" width="53pt" height="17pt" src="acp-19-12221-2019-ie00010.png"/></svg:svg></span></span> values suggest that <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions from transportation may have exceeded emissions from coal combustion. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi><mtext>-</mtext><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="eeb686f43109b6d49268b8b3d08c335a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00011.svg" width="54pt" height="17pt" src="acp-19-12221-2019-ie00011.png"/></svg:svg></span></span> values imply that the reaction of OH with <span class="inline-formula">NO<sub>2</sub></span> is the dominant pathway of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="59e8efc9900af362c4e31d9012378c85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-12221-2019-ie00012.svg" width="25pt" height="16pt" src="acp-19-12221-2019-ie00012.png"/></svg:svg></span></span> formation (57&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;11&thinsp;%), yet the contribution of heterogeneous hydrolysis of dinitrogen pentoxide was almost as important (43&thinsp;%&thinsp;<span class="inline-formula">±</span>&thinsp;11&thinsp;%). Although the limited sample set used here results in a relatively large uncertainty with regards to the origin of cloud-associated nitrogen deposition, the high concentrations of inorganic nitrogen imply that clouds represent an important source of nitrogen, especially for nitrogen-limited ecosystems in remote areas. Further simultaneous and long-term sampling of aerosol, rainfall, and cloud water is vital for understanding the anthropogenic influence on nitrogen deposition in the study region.</p>https://www.atmos-chem-phys.net/19/12221/2019/acp-19-12221-2019.pdf
spellingShingle Y. Chang
Y. Chang
Y.-L. Zhang
J. Li
C. Tian
L. Song
X. Zhai
W. Zhang
T. Huang
Y.-C. Lin
C. Zhu
Y. Fang
M. F. Lehmann
J. Chen
Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
Atmospheric Chemistry and Physics
title Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
title_full Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
title_fullStr Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
title_full_unstemmed Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
title_short Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
title_sort isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning
url https://www.atmos-chem-phys.net/19/12221/2019/acp-19-12221-2019.pdf
work_keys_str_mv AT ychang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT ychang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT ylzhang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT jli isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT ctian isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT lsong isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT xzhai isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT wzhang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT thuang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT yclin isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT czhu isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT yfang isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT mflehmann isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning
AT jchen isotopicconstraintsontheatmosphericsourcesandformationofnitrogenousspeciesincloudsinfluencedbybiomassburning