Determination of the complex frequencies for the normal modes below 1mHz after the 2010 Maule and 2011 Tohoku earthquakes

<p>Based upon SG (superconducting gravimeter) records, the autoregressive method proposed by Chao and Gilbert [1980] is used to determine the frequencies of the singlets of seven spheroidal modes (<sub>0</sub>S<sub>2</sub>, <sub>2</sub>S<sub>1</sub&...

Full description

Bibliographic Details
Main Authors: Hao Ding, Wen-Bin Shen
Format: Article
Language:English
Published: Istituto Nazionale di Geofisica e Vulcanologia (INGV) 2014-01-01
Series:Annals of Geophysics
Subjects:
Online Access:http://www.annalsofgeophysics.eu/index.php/annals/article/view/6400
Description
Summary:<p>Based upon SG (superconducting gravimeter) records, the autoregressive method proposed by Chao and Gilbert [1980] is used to determine the frequencies of the singlets of seven spheroidal modes (<sub>0</sub>S<sub>2</sub>, <sub>2</sub>S<sub>1</sub>, <sub>0</sub>S<sub>3</sub>, <sub>0</sub>S<sub>4</sub>, <sub>1</sub>S<sub>2</sub>, <sub>0</sub>S<sub>0</sub>, and <sub>3</sub>S<sub>1</sub>) and the degenerate frequencies of three toroidal modes (<sub>0</sub>T<sub>2</sub>, <sub>0</sub>T<sub>3</sub>, and <sub>0</sub>T<sub>4</sub>) below 1 mHz after two recent huge earthquakes, the 2010 Mw8.8 Maule earthquake and the 2011 Mw9.1 Tohoku earthquake. The corresponding quality factor <em>Q</em>s are also determined for those modes, of which the <em>Q</em>s of the five singlets of <sub>1</sub>S<sub>2</sub> and the five singlets (<em>m</em>=0, <em>m</em>=±2, and <em>m</em>=±3) of <sub>0</sub>S<sub>4</sub> are estimated for the first time using the SG observations. The singlet <em>m</em>=0 of <sub>3</sub>S<sub>1</sub> is clearly observed from the power spectra of the SG time series without using other special spectral analysis methods or special time series from pole station records. In addition, the splitting width ratio <em>R</em> of <sub>3</sub>S<sub>1</sub> is 0.99, and consequently we conclude that <sub>3</sub>S<sub>1</sub> is normally split. The frequencies and <em>Q</em>s of the modes below 1mHz may contribute to refining the 3D density and attenuation models of the Earth.</p>
ISSN:1593-5213
2037-416X