A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.

A scaling and renormalization approach to the Riemann zetafunction, $\zeta$, evaluated at $-1$ is presented in two ways. In the first,one takes the difference between $U_{n}:=\sum_{q=1}^{n}q$ and$4U_{\left\lfloor \frac{n}{2}\right\rfloor }$ where $\left\lfloor \frac{n}%{2}\right\rfloor $ \ is the gr...

Full description

Bibliographic Details
Main Author: Gunduz Caginalp
Format: Article
Language:English
Published: AIMS Press 2018-06-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/10.3934/Math.2018.2.316/fulltext.html
_version_ 1819179918367391744
author Gunduz Caginalp
author_facet Gunduz Caginalp
author_sort Gunduz Caginalp
collection DOAJ
description A scaling and renormalization approach to the Riemann zetafunction, $\zeta$, evaluated at $-1$ is presented in two ways. In the first,one takes the difference between $U_{n}:=\sum_{q=1}^{n}q$ and$4U_{\left\lfloor \frac{n}{2}\right\rfloor }$ where $\left\lfloor \frac{n}%{2}\right\rfloor $ \ is the greatest integer function. Using the Cesaro meantwice, i.e., $\left( C,2\right) $, yields convergence to the appropriatevalue. For values of $z$ for which the zeta function is represented by a\textit{convergent} infinite sum, the double Cesaro mean also yields$\zeta\left( z\right) ,$ suggesting that this could be used as analternative method for extension from the convergent region of $z.$ In thesecond approach, the difference $U_{n}-k^{2}\bar{U}_{n/k}$ between $U_{n}$ anda particular average, $\bar{U}_{n/k}$, involving terms up to $k<n$ and scaledby $k^{2}$ is shown to equal exactly $-\frac{1}{12}\left( 1-k^{2}\right) $for all $k<n$. This leads to another perspective for interpreting$\zeta\left( -1\right) $.
first_indexed 2024-12-22T22:06:05Z
format Article
id doaj.art-e07954cd2e0948f0a7b6042c44ceba43
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-22T22:06:05Z
publishDate 2018-06-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-e07954cd2e0948f0a7b6042c44ceba432022-12-21T18:10:59ZengAIMS PressAIMS Mathematics2473-69882018-06-013231632110.3934/Math.2018.2.316A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.Gunduz Caginalp0Mathematics Department, University of Pittsburgh, Pittsburgh, PA 15260, USAA scaling and renormalization approach to the Riemann zetafunction, $\zeta$, evaluated at $-1$ is presented in two ways. In the first,one takes the difference between $U_{n}:=\sum_{q=1}^{n}q$ and$4U_{\left\lfloor \frac{n}{2}\right\rfloor }$ where $\left\lfloor \frac{n}%{2}\right\rfloor $ \ is the greatest integer function. Using the Cesaro meantwice, i.e., $\left( C,2\right) $, yields convergence to the appropriatevalue. For values of $z$ for which the zeta function is represented by a\textit{convergent} infinite sum, the double Cesaro mean also yields$\zeta\left( z\right) ,$ suggesting that this could be used as analternative method for extension from the convergent region of $z.$ In thesecond approach, the difference $U_{n}-k^{2}\bar{U}_{n/k}$ between $U_{n}$ anda particular average, $\bar{U}_{n/k}$, involving terms up to $k<n$ and scaledby $k^{2}$ is shown to equal exactly $-\frac{1}{12}\left( 1-k^{2}\right) $for all $k<n$. This leads to another perspective for interpreting$\zeta\left( -1\right) $.http://www.aimspress.com/article/10.3934/Math.2018.2.316/fulltext.htmlRiemann zeta function| sum of natural numbers| $\zeta\left(-1\right)$| 1+2+3+...| Cesaro mean or sum
spellingShingle Gunduz Caginalp
A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
AIMS Mathematics
Riemann zeta function| sum of natural numbers| $\zeta\left(-1\right)$| 1+2+3+...| Cesaro mean or sum
title A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
title_full A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
title_fullStr A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
title_full_unstemmed A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
title_short A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~  — 1/12.
title_sort renormalization approach to the riemann zeta function at 1 1 2 3 nbsp 1 12
topic Riemann zeta function| sum of natural numbers| $\zeta\left(-1\right)$| 1+2+3+...| Cesaro mean or sum
url http://www.aimspress.com/article/10.3934/Math.2018.2.316/fulltext.html
work_keys_str_mv AT gunduzcaginalp arenormalizationapproachtotheriemannzetafunctionat1123nbsp112
AT gunduzcaginalp renormalizationapproachtotheriemannzetafunctionat1123nbsp112