Summary: | Abstract In this paper, we consider a beyond-5G scenario, where two types of users, denoted as scheduled and uncoordinated nodes, coexist on the same set of radio resources for sending data to a base station. Scheduled nodes rely solely on a centralized scheduler within the base station for the assignment of resources, while uncoordinated nodes use an unslotted Carrier Sense Multiple Access (CSMA) protocol for channel access. We propose and evaluate through simulations: (a) a novel centralized resource scheduling algorithm, called Neighbors-Aware Proportional Fair (N-PF) and (b) a novel packet length adaptation algorithm, called Channel-Aware (CA) Packet Length Adaptation algorithm for the scheduled nodes. The N-PF algorithm considers the uplink channel state conditions and the number of uncoordinated nodes neighboring each scheduled node in the aggregate scheduling metric, in order to maximize packet transmission success probability. The CA algorithm provides an additional degree of freedom for improving the performance, thanks to the fact that scheduled nodes with lower number of hidden terminals, i.e., having higher packet capture probability, are assigned longer packet transmission opportunities. We consider two benchmark schemes: Proportional Fair (PF) algorithm, as a resource scheduling algorithm, and a discrete uniform distribution (DUD) scheme for packet lengths distribution. Simulation results show that the proposed schemes can result in significant gain in terms of network goodput, without compromising fairness, with respect to two benchmark solutions taken from the literature.
|