Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III)
In this study, a stable, sensitive electrochemical sensor was fabricated by the electrochemical codeposition of reduced graphene oxide (rGO) and gold nanoparticles on a glassy carbon electrode (rGO-Aunano/GCE) using cyclic voltammetry (CV), which enabled a simple and controllable electrode modificat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | http://www.mdpi.com/2079-4991/9/1/41 |
_version_ | 1818557434500743168 |
---|---|
author | Guo Zhao Gang Liu |
author_facet | Guo Zhao Gang Liu |
author_sort | Guo Zhao |
collection | DOAJ |
description | In this study, a stable, sensitive electrochemical sensor was fabricated by the electrochemical codeposition of reduced graphene oxide (rGO) and gold nanoparticles on a glassy carbon electrode (rGO-Aunano/GCE) using cyclic voltammetry (CV), which enabled a simple and controllable electrode modification strategy for the determination of trace As(III) by square wave anodic stripping voltammetry (SWASV). SWASV, CV, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the electrochemical properties and morphology of the proposed sensing platform. The number of sweep segments, the deposition potential and the deposition time were optimized to obtain ideal sensitivity. The presence of rGO from the electroreduction of graphene oxide on the sensing interface effectively enlarged the specific surface area and consequently improved the preconcentration capacity for As(III). The rGO-Aunano/GCE sensor exhibited outstanding detection performance for As(III) due to the combined effect of Aunano and rGO formed during the electroreduction process. Under the optimized conditions, a linear range from 13.375 × 10−9 to 668.75 × 10−9 mol/L (1.0 to 50.0 μg/L) was obtained with a detection limit of 1.07 × 10−9 mol/L (0.08 μg/L) (S/N = 3). The reproducibility and reliability of the rGO-Aunano/GCE sensor were also verified by performing 8 repetitive measurements. Finally, the rGO-Aunano/GCE sensor was used for the analysis of real samples with satisfactory results. |
first_indexed | 2024-12-13T23:59:27Z |
format | Article |
id | doaj.art-e0ab36dba9d042faa7b0021a93a1864c |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-12-13T23:59:27Z |
publishDate | 2018-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-e0ab36dba9d042faa7b0021a93a1864c2022-12-21T23:26:25ZengMDPI AGNanomaterials2079-49912018-12-01914110.3390/nano9010041nano9010041Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III)Guo Zhao0Gang Liu1Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083, ChinaIn this study, a stable, sensitive electrochemical sensor was fabricated by the electrochemical codeposition of reduced graphene oxide (rGO) and gold nanoparticles on a glassy carbon electrode (rGO-Aunano/GCE) using cyclic voltammetry (CV), which enabled a simple and controllable electrode modification strategy for the determination of trace As(III) by square wave anodic stripping voltammetry (SWASV). SWASV, CV, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the electrochemical properties and morphology of the proposed sensing platform. The number of sweep segments, the deposition potential and the deposition time were optimized to obtain ideal sensitivity. The presence of rGO from the electroreduction of graphene oxide on the sensing interface effectively enlarged the specific surface area and consequently improved the preconcentration capacity for As(III). The rGO-Aunano/GCE sensor exhibited outstanding detection performance for As(III) due to the combined effect of Aunano and rGO formed during the electroreduction process. Under the optimized conditions, a linear range from 13.375 × 10−9 to 668.75 × 10−9 mol/L (1.0 to 50.0 μg/L) was obtained with a detection limit of 1.07 × 10−9 mol/L (0.08 μg/L) (S/N = 3). The reproducibility and reliability of the rGO-Aunano/GCE sensor were also verified by performing 8 repetitive measurements. Finally, the rGO-Aunano/GCE sensor was used for the analysis of real samples with satisfactory results.http://www.mdpi.com/2079-4991/9/1/41reduced graphene oxidegold nanoparticlesquare wave anodic stripping voltammetryarsenic detectionsoil |
spellingShingle | Guo Zhao Gang Liu Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) Nanomaterials reduced graphene oxide gold nanoparticle square wave anodic stripping voltammetry arsenic detection soil |
title | Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) |
title_full | Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) |
title_fullStr | Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) |
title_full_unstemmed | Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) |
title_short | Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) |
title_sort | electrochemical deposition of gold nanoparticles on reduced graphene oxide by fast scan cyclic voltammetry for the sensitive determination of as iii |
topic | reduced graphene oxide gold nanoparticle square wave anodic stripping voltammetry arsenic detection soil |
url | http://www.mdpi.com/2079-4991/9/1/41 |
work_keys_str_mv | AT guozhao electrochemicaldepositionofgoldnanoparticlesonreducedgrapheneoxidebyfastscancyclicvoltammetryforthesensitivedeterminationofasiii AT gangliu electrochemicaldepositionofgoldnanoparticlesonreducedgrapheneoxidebyfastscancyclicvoltammetryforthesensitivedeterminationofasiii |