On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value

This study concerns the existence of positive solutions to classes of boundary value problems of the form −∆u = g(x,u), x ∈ Ω, u(x) = 0, x ∈ ∂Ω, where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (se...

Full description

Bibliographic Details
Main Authors: G. A. Afrouzi, S. H. Rasouli
Format: Article
Language:English
Published: Vilnius University Press 2006-11-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.journals.vu.lt/nonlinear-analysis/article/view/14736
_version_ 1818384631998709760
author G. A. Afrouzi
S. H. Rasouli
author_facet G. A. Afrouzi
S. H. Rasouli
author_sort G. A. Afrouzi
collection DOAJ
description This study concerns the existence of positive solutions to classes of boundary value problems of the form −∆u = g(x,u), x ∈ Ω, u(x) = 0, x ∈ ∂Ω, where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).
first_indexed 2024-12-14T03:25:20Z
format Article
id doaj.art-e0bcba9a18074cdcbd6c6397d3ad8b34
institution Directory Open Access Journal
issn 1392-5113
2335-8963
language English
last_indexed 2024-12-14T03:25:20Z
publishDate 2006-11-01
publisher Vilnius University Press
record_format Article
series Nonlinear Analysis
spelling doaj.art-e0bcba9a18074cdcbd6c6397d3ad8b342022-12-21T23:18:53ZengVilnius University PressNonlinear Analysis1392-51132335-89632006-11-0111410.15388/NA.2006.11.4.14736On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary ValueG. A. Afrouzi0S. H. Rasouli1Mazandaran University, IranMazandaran University, IranThis study concerns the existence of positive solutions to classes of boundary value problems of the form −∆u = g(x,u), x ∈ Ω, u(x) = 0, x ∈ ∂Ω, where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).http://www.journals.vu.lt/nonlinear-analysis/article/view/14736positive solutionssub-super solution
spellingShingle G. A. Afrouzi
S. H. Rasouli
On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
Nonlinear Analysis
positive solutions
sub-super solution
title On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
title_full On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
title_fullStr On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
title_full_unstemmed On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
title_short On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value
title_sort on positive solutions for some nonlinear semipositone elliptic boundary value
topic positive solutions
sub-super solution
url http://www.journals.vu.lt/nonlinear-analysis/article/view/14736
work_keys_str_mv AT gaafrouzi onpositivesolutionsforsomenonlinearsemipositoneellipticboundaryvalue
AT shrasouli onpositivesolutionsforsomenonlinearsemipositoneellipticboundaryvalue