Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer

Heat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters af...

Full description

Bibliographic Details
Main Authors: Mongkol Kaewbumrung, Akapak Charoenloedmongkhon
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/7/4/131
_version_ 1797446459258306560
author Mongkol Kaewbumrung
Akapak Charoenloedmongkhon
author_facet Mongkol Kaewbumrung
Akapak Charoenloedmongkhon
author_sort Mongkol Kaewbumrung
collection DOAJ
description Heat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters affect the temperature distribution in the cavity. In this paper, we focus on the improvement of a mathematical model, in order to enhance the accuracy of the solution, by investigating a new source term in the SST <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></semantics></math></inline-formula> turbulence model based on the finite volume technique. The commercial numerical simulation software ANSYS Fluent 2021R1 is implemented to validate the accuracy. A concentric cavity was chosen for validation, the obtained temperature profiles at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>0</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>30</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>60</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>120</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>150</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula> were compared with previous experimental data. We applied this model to four eccentric rotating scenarios, including inner counterclockwise rotation, outer counterclockwise rotation, inner–outer clockwise rotation, and inner clockwise–outer counterclockwise rotation. The numerical simulation results reveal that the new source term in the momentum equation can produce superior results in the concentric test-case. The proposed mathematical model can describe the heat transfer under the eccentric co-rotation scenario well. Furthermore, the results for eccentric cases confirm that the rotational direction affects the mixing temperature by generating a large vortex in the cavity, which increases the temperature mixing performance.
first_indexed 2024-03-09T13:41:48Z
format Article
id doaj.art-e0bd56584ce149a3b4a046dc8b714e9f
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-09T13:41:48Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-e0bd56584ce149a3b4a046dc8b714e9f2023-11-30T21:07:01ZengMDPI AGFluids2311-55212022-04-017413110.3390/fluids7040131Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat TransferMongkol Kaewbumrung0Akapak Charoenloedmongkhon1Department of Mechanical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, ThailandDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandHeat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters affect the temperature distribution in the cavity. In this paper, we focus on the improvement of a mathematical model, in order to enhance the accuracy of the solution, by investigating a new source term in the SST <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></semantics></math></inline-formula> turbulence model based on the finite volume technique. The commercial numerical simulation software ANSYS Fluent 2021R1 is implemented to validate the accuracy. A concentric cavity was chosen for validation, the obtained temperature profiles at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>0</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>30</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>60</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>120</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>150</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula> were compared with previous experimental data. We applied this model to four eccentric rotating scenarios, including inner counterclockwise rotation, outer counterclockwise rotation, inner–outer clockwise rotation, and inner clockwise–outer counterclockwise rotation. The numerical simulation results reveal that the new source term in the momentum equation can produce superior results in the concentric test-case. The proposed mathematical model can describe the heat transfer under the eccentric co-rotation scenario well. Furthermore, the results for eccentric cases confirm that the rotational direction affects the mixing temperature by generating a large vortex in the cavity, which increases the temperature mixing performance.https://www.mdpi.com/2311-5521/7/4/131eccentric co-rotatingmathematical modelturbulent flowheat transfer
spellingShingle Mongkol Kaewbumrung
Akapak Charoenloedmongkhon
Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
Fluids
eccentric co-rotating
mathematical model
turbulent flow
heat transfer
title Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
title_full Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
title_fullStr Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
title_full_unstemmed Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
title_short Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
title_sort numerical simulation of turbulent flow in eccentric co rotating heat transfer
topic eccentric co-rotating
mathematical model
turbulent flow
heat transfer
url https://www.mdpi.com/2311-5521/7/4/131
work_keys_str_mv AT mongkolkaewbumrung numericalsimulationofturbulentflowineccentriccorotatingheattransfer
AT akapakcharoenloedmongkhon numericalsimulationofturbulentflowineccentriccorotatingheattransfer