Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer
Heat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters af...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Fluids |
Subjects: | |
Online Access: | https://www.mdpi.com/2311-5521/7/4/131 |
_version_ | 1797446459258306560 |
---|---|
author | Mongkol Kaewbumrung Akapak Charoenloedmongkhon |
author_facet | Mongkol Kaewbumrung Akapak Charoenloedmongkhon |
author_sort | Mongkol Kaewbumrung |
collection | DOAJ |
description | Heat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters affect the temperature distribution in the cavity. In this paper, we focus on the improvement of a mathematical model, in order to enhance the accuracy of the solution, by investigating a new source term in the SST <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></semantics></math></inline-formula> turbulence model based on the finite volume technique. The commercial numerical simulation software ANSYS Fluent 2021R1 is implemented to validate the accuracy. A concentric cavity was chosen for validation, the obtained temperature profiles at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>0</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>30</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>60</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>120</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>150</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula> were compared with previous experimental data. We applied this model to four eccentric rotating scenarios, including inner counterclockwise rotation, outer counterclockwise rotation, inner–outer clockwise rotation, and inner clockwise–outer counterclockwise rotation. The numerical simulation results reveal that the new source term in the momentum equation can produce superior results in the concentric test-case. The proposed mathematical model can describe the heat transfer under the eccentric co-rotation scenario well. Furthermore, the results for eccentric cases confirm that the rotational direction affects the mixing temperature by generating a large vortex in the cavity, which increases the temperature mixing performance. |
first_indexed | 2024-03-09T13:41:48Z |
format | Article |
id | doaj.art-e0bd56584ce149a3b4a046dc8b714e9f |
institution | Directory Open Access Journal |
issn | 2311-5521 |
language | English |
last_indexed | 2024-03-09T13:41:48Z |
publishDate | 2022-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Fluids |
spelling | doaj.art-e0bd56584ce149a3b4a046dc8b714e9f2023-11-30T21:07:01ZengMDPI AGFluids2311-55212022-04-017413110.3390/fluids7040131Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat TransferMongkol Kaewbumrung0Akapak Charoenloedmongkhon1Department of Mechanical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, ThailandDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandHeat transfer engineering is significant in many applications, especially in buoyancy natural convection in concentric and eccentric cavities. The biggest practical challenges, in this context, are capturing the self-natural flow, estimating the mixing performance, and determining what parameters affect the temperature distribution in the cavity. In this paper, we focus on the improvement of a mathematical model, in order to enhance the accuracy of the solution, by investigating a new source term in the SST <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></semantics></math></inline-formula> turbulence model based on the finite volume technique. The commercial numerical simulation software ANSYS Fluent 2021R1 is implemented to validate the accuracy. A concentric cavity was chosen for validation, the obtained temperature profiles at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>0</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>30</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>60</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>90</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>120</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>150</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><msup><mn>180</mn><mo>°</mo></msup></mrow></semantics></math></inline-formula> were compared with previous experimental data. We applied this model to four eccentric rotating scenarios, including inner counterclockwise rotation, outer counterclockwise rotation, inner–outer clockwise rotation, and inner clockwise–outer counterclockwise rotation. The numerical simulation results reveal that the new source term in the momentum equation can produce superior results in the concentric test-case. The proposed mathematical model can describe the heat transfer under the eccentric co-rotation scenario well. Furthermore, the results for eccentric cases confirm that the rotational direction affects the mixing temperature by generating a large vortex in the cavity, which increases the temperature mixing performance.https://www.mdpi.com/2311-5521/7/4/131eccentric co-rotatingmathematical modelturbulent flowheat transfer |
spellingShingle | Mongkol Kaewbumrung Akapak Charoenloedmongkhon Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer Fluids eccentric co-rotating mathematical model turbulent flow heat transfer |
title | Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer |
title_full | Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer |
title_fullStr | Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer |
title_full_unstemmed | Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer |
title_short | Numerical Simulation of Turbulent Flow in Eccentric Co-Rotating Heat Transfer |
title_sort | numerical simulation of turbulent flow in eccentric co rotating heat transfer |
topic | eccentric co-rotating mathematical model turbulent flow heat transfer |
url | https://www.mdpi.com/2311-5521/7/4/131 |
work_keys_str_mv | AT mongkolkaewbumrung numericalsimulationofturbulentflowineccentriccorotatingheattransfer AT akapakcharoenloedmongkhon numericalsimulationofturbulentflowineccentriccorotatingheattransfer |