On the partial transpose of fermionic Gaussian states

We consider Gaussian states of fermionic systems and study the action of the partial transposition on the density matrix. It is shown that, with a suitable choice of basis, these states are transformed into a linear combination of two Gaussian operators that are uniquely defined in terms of the cova...

Full description

Bibliographic Details
Main Authors: Viktor Eisler, Zoltán Zimborás
Format: Article
Language:English
Published: IOP Publishing 2015-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/17/5/053048
Description
Summary:We consider Gaussian states of fermionic systems and study the action of the partial transposition on the density matrix. It is shown that, with a suitable choice of basis, these states are transformed into a linear combination of two Gaussian operators that are uniquely defined in terms of the covariance matrix of the original state. In case of a reflection symmetric geometry, this result can be used to efficiently calculate a lower bound for a well-known entanglement measure, the logarithmic negativity. Furthermore, exact expressions can be derived for traces involving integer powers of the partial transpose. The method can also be applied to the quantum Ising chain and the results show perfect agreement with the predictions of conformal field theory.
ISSN:1367-2630