A Molecular Dynamics Study of the Mechanical Properties of Twisted Bilayer Graphene
Graphene is one of the most important nanomaterials. The twisted bilayer graphene shows superior electronic properties compared to graphene. Here, we demonstrate via molecular dynamics simulations that twisted bilayer graphene possesses outstanding mechanical properties. We find that the mechanical...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-08-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-666X/9/9/440 |
Summary: | Graphene is one of the most important nanomaterials. The twisted bilayer graphene shows superior electronic properties compared to graphene. Here, we demonstrate via molecular dynamics simulations that twisted bilayer graphene possesses outstanding mechanical properties. We find that the mechanical strain rate and the presence of cracks have negligible effects on the linear elastic properties, but not the nonlinear mechanical properties, including fracture toughness. The “two-peak” pattern in the stress-strain curves of the bilayer composites of defective and pristine graphene indicates a sequential failure of the two layers. Our study provides a safe-guide for the design and applications of multilayer grapheme-based nanoelectronic devices. |
---|---|
ISSN: | 2072-666X |