On Geometric Properties of a Certain Analytic Function with Negative Coefficients

Various function theorists have successfully defined and investigated different kinds of analytic functions. The applications of such functions have played significant roles in geometry function theory as a field of complex analysis. In this work, therefore, a certain subclass of univalent analytic...

Full description

Bibliographic Details
Main Authors: Matthew Olanrewaju Oluwayemi, Esther O. Davids, Adriana Cătaş
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/3/172
_version_ 1827648989836607488
author Matthew Olanrewaju Oluwayemi
Esther O. Davids
Adriana Cătaş
author_facet Matthew Olanrewaju Oluwayemi
Esther O. Davids
Adriana Cătaş
author_sort Matthew Olanrewaju Oluwayemi
collection DOAJ
description Various function theorists have successfully defined and investigated different kinds of analytic functions. The applications of such functions have played significant roles in geometry function theory as a field of complex analysis. In this work, therefore, a certain subclass of univalent analytic functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mi>z</mi><mo>−</mo><msubsup><mo>∑</mo><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow><mi>t</mi></msubsup><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mrow><mo>[</mo><mi>ω</mi><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>γ</mi><mo>−</mo><mi>σ</mi><mo>]</mo></mrow><msub><mi>C</mi><mi>m</mi></msub></mrow><mrow><mrow><mo>[</mo><mi>m</mi><mi>σ</mi><mo>−</mo><mi>c</mi><mi>ω</mi><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>γ</mi><mo>]</mo></mrow><msup><mi>K</mi><mi>n</mi></msup></mrow></mfrac></mstyle><msup><mi>z</mi><mi>m</mi></msup><mo>−</mo><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>a</mi><mi>k</mi></msub><msup><mi>z</mi><mi>k</mi></msup></mrow></semantics></math></inline-formula> is defined using a generalized differential operator. Furthermore, some geometric properties for the class were established.
first_indexed 2024-03-09T19:49:41Z
format Article
id doaj.art-e0d5aadc5243441a808d28968d58033c
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T19:49:41Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-e0d5aadc5243441a808d28968d58033c2023-11-24T01:14:52ZengMDPI AGFractal and Fractional2504-31102022-03-016317210.3390/fractalfract6030172On Geometric Properties of a Certain Analytic Function with Negative CoefficientsMatthew Olanrewaju Oluwayemi0Esther O. Davids1Adriana Cătaş2Health and Well Being Research Group, Landmark University, SDG 3, Omu-Aran 251103, NigeriaHealth and Well Being Research Group, Landmark University, SDG 3, Omu-Aran 251103, NigeriaDepartment of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, RomaniaVarious function theorists have successfully defined and investigated different kinds of analytic functions. The applications of such functions have played significant roles in geometry function theory as a field of complex analysis. In this work, therefore, a certain subclass of univalent analytic functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mi>z</mi><mo>−</mo><msubsup><mo>∑</mo><mrow><mi>m</mi><mo>=</mo><mn>2</mn></mrow><mi>t</mi></msubsup><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mrow><mo>[</mo><mi>ω</mi><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>γ</mi><mo>−</mo><mi>σ</mi><mo>]</mo></mrow><msub><mi>C</mi><mi>m</mi></msub></mrow><mrow><mrow><mo>[</mo><mi>m</mi><mi>σ</mi><mo>−</mo><mi>c</mi><mi>ω</mi><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>γ</mi><mo>]</mo></mrow><msup><mi>K</mi><mi>n</mi></msup></mrow></mfrac></mstyle><msup><mi>z</mi><mi>m</mi></msup><mo>−</mo><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow><mo>∞</mo></msubsup><msub><mi>a</mi><mi>k</mi></msub><msup><mi>z</mi><mi>k</mi></msup></mrow></semantics></math></inline-formula> is defined using a generalized differential operator. Furthermore, some geometric properties for the class were established.https://www.mdpi.com/2504-3110/6/3/172analytic functionsunivalent functioncoefficient estimatesfixed coefficientsextreme points
spellingShingle Matthew Olanrewaju Oluwayemi
Esther O. Davids
Adriana Cătaş
On Geometric Properties of a Certain Analytic Function with Negative Coefficients
Fractal and Fractional
analytic functions
univalent function
coefficient estimates
fixed coefficients
extreme points
title On Geometric Properties of a Certain Analytic Function with Negative Coefficients
title_full On Geometric Properties of a Certain Analytic Function with Negative Coefficients
title_fullStr On Geometric Properties of a Certain Analytic Function with Negative Coefficients
title_full_unstemmed On Geometric Properties of a Certain Analytic Function with Negative Coefficients
title_short On Geometric Properties of a Certain Analytic Function with Negative Coefficients
title_sort on geometric properties of a certain analytic function with negative coefficients
topic analytic functions
univalent function
coefficient estimates
fixed coefficients
extreme points
url https://www.mdpi.com/2504-3110/6/3/172
work_keys_str_mv AT matthewolanrewajuoluwayemi ongeometricpropertiesofacertainanalyticfunctionwithnegativecoefficients
AT estherodavids ongeometricpropertiesofacertainanalyticfunctionwithnegativecoefficients
AT adrianacatas ongeometricpropertiesofacertainanalyticfunctionwithnegativecoefficients