Free Vibration Analysis of Thick Annular Functionally Graded Plate Integrated with Piezo-Magneto-Electro-Elastic Layers in a Hygrothermal Environment

The present work aims at investigating the hygrothermal effect on the natural frequencies of functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the Hamilto...

Full description

Bibliographic Details
Main Authors: Faraz Kiarasi, Masoud Babaei, Kamran Asemi, Rossana Dimitri, Francesco Tornabene
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/20/10682
Description
Summary:The present work aims at investigating the hygrothermal effect on the natural frequencies of functionally graded (FG) annular plates integrated with piezo-magneto-electro-elastic layers resting on a Pasternak elastic foundation. The formulation is based on a layer-wise (LW) theory, where the Hamiltonian principle is used to obtain the governing equation of the problem involving temperature- and moisture-dependent material properties. The differential quadrature method (DQM) is applied here as a numerical strategy to solve the governing equations for different boundary conditions. The material properties of FG annular plates are varied along the thickness based on a power law function. The accuracy of the proposed method is, first, validated for a limit-case example. A sensitivity study of the free vibration response is, thus, performed for different input parameters, such as temperature and moisture variations, elastic foundation, boundary conditions, electric and magnetic potential of piezo-magneto-electro-elastic layers and geometrical ratios, with useful insights from a design standpoint.
ISSN:2076-3417