Rare earth elements in the hypergene zone of the Sherlovogorsk tin-polymetallic deposit (Transbaykal region)

The relevance of the research is caused by insufficient knowledge about behavior of rare earth elements in hypergene zone of sulfide deposits. Sulfide oxidation leads to formation of highly reactive acid waters and active migration of metals, including rare earth elements. Formation of secondary min...

Full description

Bibliographic Details
Main Authors: Ekaterina S. Epova, Olga S. Rusal, Oleg V. Eremin
Format: Article
Language:Russian
Published: Tomsk Polytechnic University 2018-08-01
Series:Известия Томского политехнического университета: Инжиниринг георесурсов
Subjects:
Online Access:http://izvestiya-tpu.ru/archive/article/view/2076
Description
Summary:The relevance of the research is caused by insufficient knowledge about behavior of rare earth elements in hypergene zone of sulfide deposits. Sulfide oxidation leads to formation of highly reactive acid waters and active migration of metals, including rare earth elements. Formation of secondary minerals on different types of geochemical barriers is an intermediate stage in rare earth elements transport. The main aim of the research is the establishment of the role of new mineral formation associations in migration and distribution of rare earth elements in the conditions of hypergene zone. Object of the research is mineral of rozenite group of the Sherlovogorsk tin/polymetallic deposit. Methods. Mineral composition of solid samples was determined by x/ray method on diffractometer DRON-3 in the Cu Ka radiation by powder method. Chemical composition of minerals was determined by atomic emission spectrometry with inductively coupled plasma on the Perkin Elmer Optima 5300DV (USA) and mass spectrometry on the spectrometer Perkin Elmer NexION 300D (USA). Total and sulfate sulfur was determined by infrared absorption on the analyzer LECO CS230 SHHS. Results. According to the carried out analyses it is determined that the bedrock, ore and hypergene minerals are largely enriched in lanthanides of yttrium group and exceed Clarkie of the earth crust several times. For surface waters the concentrations of rare earth elements are higher by orders than for average ones of river waters. It was revealed that the newly formed minerals are concentrators of rare earth elements and the source of their secondary migration in dissolved form in the hypergene zone. Waters ponds with high contents of rare earth elements can be considered as a potential liquid ore of these elements.
ISSN:2500-1019
2413-1830