Biosorption of Phosphate Ion on Albizia Lebbeck Seed Pod with and Without Organic Acid Modification

This study uses batch experiment to compare the binding efficiency of phosphate onto Albizia lebbeck (ALB) pod with and without citric acid (CALB) or tartaric acid (TALB) modification. The residual phosphate concentration was analyzed using ascorbic acid method and the generated data were fitted in...

Full description

Bibliographic Details
Main Authors: AH Alabi, CA Olanrewaju, SO Suara
Format: Article
Language:English
Published: Joint Coordination Centre of the World Bank assisted National Agricultural Research Programme (NARP) 2018-06-01
Series:Journal of Applied Sciences and Environmental Management
Subjects:
Online Access:https://www.ajol.info/index.php/jasem/article/view/172645
Description
Summary:This study uses batch experiment to compare the binding efficiency of phosphate onto Albizia lebbeck (ALB) pod with and without citric acid (CALB) or tartaric acid (TALB) modification. The residual phosphate concentration was analyzed using ascorbic acid method and the generated data were fitted into equilibrium isotherms and kinetics models. Intra-particle diffusion model was used to describe the biosorption mechanism. Characterization by FTIR spectroscopy and SEM shows that modification was successful. The maximum biosorption capacity occurred at biosorbent dosage of 0.5 g for ALB and 1.0 g for CALB and TALB. At optimum pH for each biosorbents, phosphate biosorption capacity is in the order ALB>CALB>TALB. Equilibrium time of 90, 150 and 60 minutes were recorded for phosphate on ALB, CALB and TALB respectively. The biosorption capacity increases as the initial anion concentration increases with highest biosorption capacity of 5.296 mg/g for ALB. Langmuir isotherm describes CALB data while TALB data fits Freundlich. Results from this study suggest that unmodified Albizia lebbeck can be used as a low-cost, highly-efficient biosorbent for phosphate removal in effluents.
ISSN:2659-1502
2659-1499