EPPRD: An Efficient Privacy-Preserving Power Requirement and Distribution Aggregation Scheme for a Smart Grid

A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users’ private information. Therefore, improving the individual power requirement and d...

Full description

Bibliographic Details
Main Authors: Lei Zhang, Jing Zhang
Format: Article
Language:English
Published: MDPI AG 2017-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/8/1814
Description
Summary:A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users’ private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes.
ISSN:1424-8220