On Performance and Calibration of Natural Gradient Langevin Dynamics
Producing deep neural network (DNN) models with calibrated confidence is essential for applications in many fields, such as medical image analysis, natural language processing, and robotics. Modern neural networks have been reported to be poorly calibrated compared with those from a decade ago. The...
Päätekijät: | Hanif Amal Robbani, Alhadi Bustamam, Risman Adnan, Shandar Ahmad |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2023-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10131934/ |
Samankaltaisia teoksia
-
Fast Sampling of Score-Based Models With Cyclical Diffusion Sampling
Tekijä: Karimul Makhtidi, et al.
Julkaistu: (2024-01-01) -
On a generalization of fractional Langevin equation with boundary conditions
Tekijä: Zheng Kou, et al.
Julkaistu: (2022-01-01) -
Dynamical Sampling with Langevin Normalization Flows
Tekijä: Minghao Gu, et al.
Julkaistu: (2019-11-01) -
Calibration with confidence: a principled method for panel assessment
Tekijä: R. S. MacKay, et al.
Julkaistu: (2017-01-01) -
Lévy-walk-like Langevin dynamics
Tekijä: Xudong Wang, et al.
Julkaistu: (2019-01-01)