On Performance and Calibration of Natural Gradient Langevin Dynamics
Producing deep neural network (DNN) models with calibrated confidence is essential for applications in many fields, such as medical image analysis, natural language processing, and robotics. Modern neural networks have been reported to be poorly calibrated compared with those from a decade ago. The...
Үндсэн зохиолчид: | Hanif Amal Robbani, Alhadi Bustamam, Risman Adnan, Shandar Ahmad |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
IEEE
2023-01-01
|
Цуврал: | IEEE Access |
Нөхцлүүд: | |
Онлайн хандалт: | https://ieeexplore.ieee.org/document/10131934/ |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Fast Sampling of Score-Based Models With Cyclical Diffusion Sampling
-н: Karimul Makhtidi, зэрэг
Хэвлэсэн: (2024-01-01) -
On a generalization of fractional Langevin equation with boundary conditions
-н: Zheng Kou, зэрэг
Хэвлэсэн: (2022-01-01) -
Dynamical Sampling with Langevin Normalization Flows
-н: Minghao Gu, зэрэг
Хэвлэсэн: (2019-11-01) -
Calibration with confidence: a principled method for panel assessment
-н: R. S. MacKay, зэрэг
Хэвлэсэн: (2017-01-01) -
Lévy-walk-like Langevin dynamics
-н: Xudong Wang, зэрэг
Хэвлэсэн: (2019-01-01)