On Performance and Calibration of Natural Gradient Langevin Dynamics
Producing deep neural network (DNN) models with calibrated confidence is essential for applications in many fields, such as medical image analysis, natural language processing, and robotics. Modern neural networks have been reported to be poorly calibrated compared with those from a decade ago. The...
Main Authors: | Hanif Amal Robbani, Alhadi Bustamam, Risman Adnan, Shandar Ahmad |
---|---|
格式: | 文件 |
语言: | English |
出版: |
IEEE
2023-01-01
|
丛编: | IEEE Access |
主题: | |
在线阅读: | https://ieeexplore.ieee.org/document/10131934/ |
相似书籍
-
Fast Sampling of Score-Based Models With Cyclical Diffusion Sampling
由: Karimul Makhtidi, et al.
出版: (2024-01-01) -
On a generalization of fractional Langevin equation with boundary conditions
由: Zheng Kou, et al.
出版: (2022-01-01) -
Dynamical Sampling with Langevin Normalization Flows
由: Minghao Gu, et al.
出版: (2019-11-01) -
Calibration with confidence: a principled method for panel assessment
由: R. S. MacKay, et al.
出版: (2017-01-01) -
Lévy-walk-like Langevin dynamics
由: Xudong Wang, et al.
出版: (2019-01-01)