Improved Separation of Polyphonic Chamber Music Signals by Integrating Instrument Activity Labels

The separation of music signals is a very challenging task, especially in case of polyphonic chamber music signals because of the similar frequency ranges and sound characteristics of the different instruments to separate. In this work, a joint separation approach in the time domain with a U-Net arc...

Full description

Bibliographic Details
Main Authors: Markus Schwabe, Michael Heizmann
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10109737/
Description
Summary:The separation of music signals is a very challenging task, especially in case of polyphonic chamber music signals because of the similar frequency ranges and sound characteristics of the different instruments to separate. In this work, a joint separation approach in the time domain with a U-Net architecture is extended to incorporate additional time-dependent instrument activity information for improved instrument track extractions. Different stages are investigated to integrate the additional information, but an input before the deepest encoder block achieves best separation results as well as highest robustness against randomly wrong labels. This approach outperforms a label integration by multiplication and the input of a static instrument label. Targeted data augmentation by incoherent mixtures is used for a trio example of violin, trumpet, and flute to improve separation results. Moreover, an alternative separation approach with one independent separation model for each instrument is investigated, which enables a more flexible architecture. In this case, an input after the deepest encoder block achieves best separation results, but the robustness is slightly reduced compared to the joint model. The improvements by additional information on active instruments are verified by using real instrument activity predictions for both the joint and the independent separation approaches.
ISSN:2169-3536