Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow

Studies of flow through the human airway have shown that inhalation time (IT) and secondary flow structures can play important roles in particle deposition. However, the effects of varying IT in conjunction with the respiratory rate (RR) on airway flow remain unknown. Using three-dimensional numeric...

Full description

Bibliographic Details
Main Authors: Manikantam G. Gaddam, Arvind Santhanakrishnan
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/6/221
_version_ 1797530424338022400
author Manikantam G. Gaddam
Arvind Santhanakrishnan
author_facet Manikantam G. Gaddam
Arvind Santhanakrishnan
author_sort Manikantam G. Gaddam
collection DOAJ
description Studies of flow through the human airway have shown that inhalation time (IT) and secondary flow structures can play important roles in particle deposition. However, the effects of varying IT in conjunction with the respiratory rate (RR) on airway flow remain unknown. Using three-dimensional numerical simulations of oscillatory flow through an idealized airway model (consisting of a mouth, glottis, trachea, and symmetric double bifurcation) at a trachea Reynolds number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>) of 4200, we investigated how varying the ratio of IT to breathing time (BT) from 25% to 50% and RR from 10 breaths per minute (bpm) corresponding to a Womersley number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>) of 2.41 to 1000 bpm (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 24.1) impacts airway flow characteristics. Irrespective of IT/BT, axial flow during inhalation at tracheal cross-sections was non-uniform for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 2.41, as compared to centrally concentrated distribution for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 24.1. For a given <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> and IT/BT, both axial and secondary (lateral) flow components unevenly split between left and right branches of a bifurcation. Irrespective of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>, IT/BT and airway generation, lateral dispersion was a stronger transport mechanism than axial flow streaming. Discrepancy in the oscillatory flow relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><msup><mi>o</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> = 2 <i>L</i>/<i>D</i> (<i>L</i> = stroke length; <i>D</i> = trachea diameter) was observed for IT/BT ≠ 50%, as <i>L</i> changed with IT/BT. We developed a modified dimensionless stroke length term including IT/BT. While viscous forces and convective acceleration were dominant for lower <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>, unsteady acceleration was dominant for higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T10:28:45Z
format Article
id doaj.art-e0ff1ca1c5234357bb98346f9f14ad08
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-10T10:28:45Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-e0ff1ca1c5234357bb98346f9f14ad082023-11-21T23:49:10ZengMDPI AGFluids2311-55212021-06-016622110.3390/fluids6060221Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway FlowManikantam G. Gaddam0Arvind Santhanakrishnan1School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USASchool of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USAStudies of flow through the human airway have shown that inhalation time (IT) and secondary flow structures can play important roles in particle deposition. However, the effects of varying IT in conjunction with the respiratory rate (RR) on airway flow remain unknown. Using three-dimensional numerical simulations of oscillatory flow through an idealized airway model (consisting of a mouth, glottis, trachea, and symmetric double bifurcation) at a trachea Reynolds number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>) of 4200, we investigated how varying the ratio of IT to breathing time (BT) from 25% to 50% and RR from 10 breaths per minute (bpm) corresponding to a Womersley number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>) of 2.41 to 1000 bpm (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 24.1) impacts airway flow characteristics. Irrespective of IT/BT, axial flow during inhalation at tracheal cross-sections was non-uniform for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 2.41, as compared to centrally concentrated distribution for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> = 24.1. For a given <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula> and IT/BT, both axial and secondary (lateral) flow components unevenly split between left and right branches of a bifurcation. Irrespective of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>, IT/BT and airway generation, lateral dispersion was a stronger transport mechanism than axial flow streaming. Discrepancy in the oscillatory flow relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula>/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><msup><mi>o</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> = 2 <i>L</i>/<i>D</i> (<i>L</i> = stroke length; <i>D</i> = trachea diameter) was observed for IT/BT ≠ 50%, as <i>L</i> changed with IT/BT. We developed a modified dimensionless stroke length term including IT/BT. While viscous forces and convective acceleration were dominant for lower <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>, unsteady acceleration was dominant for higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>o</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2311-5521/6/6/221high-frequency oscillatory ventilationHFOVinhalation timerespiratory flow
spellingShingle Manikantam G. Gaddam
Arvind Santhanakrishnan
Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
Fluids
high-frequency oscillatory ventilation
HFOV
inhalation time
respiratory flow
title Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
title_full Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
title_fullStr Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
title_full_unstemmed Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
title_short Effects of Varying Inhalation Duration and Respiratory Rate on Human Airway Flow
title_sort effects of varying inhalation duration and respiratory rate on human airway flow
topic high-frequency oscillatory ventilation
HFOV
inhalation time
respiratory flow
url https://www.mdpi.com/2311-5521/6/6/221
work_keys_str_mv AT manikantamggaddam effectsofvaryinginhalationdurationandrespiratoryrateonhumanairwayflow
AT arvindsanthanakrishnan effectsofvaryinginhalationdurationandrespiratoryrateonhumanairwayflow