Fabrication of semi-transparent SrTaO2N photoanodes with a GaN underlayer grown via atomic layer deposition

Quaternary metal oxynitride-based photoanodes with a large light transmittance are promising for high solar-to-hydrogen (STH) conversion efficiency in photoelectrochemical (PEC) tandem cells. Transparent substrates to support PEC water-splitting were fabricated using atomic layer deposition (ALD) to...

Full description

Bibliographic Details
Main Authors: Can Lu, Nathan J. O'Brien, Polla Rouf, Richard Dronskowski, Henrik Pedersen, Adam Slabon
Format: Article
Language:English
Published: Taylor & Francis Group 2022-07-01
Series:Green Chemistry Letters and Reviews
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/17518253.2022.2125352
Description
Summary:Quaternary metal oxynitride-based photoanodes with a large light transmittance are promising for high solar-to-hydrogen (STH) conversion efficiency in photoelectrochemical (PEC) tandem cells. Transparent substrates to support PEC water-splitting were fabricated using atomic layer deposition (ALD) to synthesize 30 and 60 nm GaN on SiC substrates. A generalized approach was used to grow a quaternary metal oxynitride, i.e. SrTaO2N thin film on the GaN/SiC substrates. The transparency above 60% in the wide solar spectrum highlights its availability of transmitting visible light to the rear side. A photocurrent onset at ca. −0.4 V vs. reversible hydrogen electrode (RHE) was achieved by the SrTaO2N/GaN/SiC photoanodes in a 0.1 M NaOH electrolyte under simulated solar irradiation. This paves the way for the construction of hierarchically nanostructured tandem PEC cells. This work demonstrates the viability of integrating ALD in constructing substrates for semi-transparent quaternary metal oxynitride photoanodes.
ISSN:1751-8253
1751-7192