Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel

Silicon existence in conventional low carbon TRIP steel is essential for inhibiting cementite precipitation, despite that it tends to obstruct the hot-dip galvanizing process. Aluminum is considered the mostly preferable substituent of silicon for such purpose. However, it has a counter effect on th...

Full description

Bibliographic Details
Main Authors: A. El-Sherbiny, Mohamed K. El-Fawkhry, Ahmed Y. Shash, T. El-Hossany
Format: Article
Language:English
Published: Elsevier 2020-05-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785419322094
Description
Summary:Silicon existence in conventional low carbon TRIP steel is essential for inhibiting cementite precipitation, despite that it tends to obstruct the hot-dip galvanizing process. Aluminum is considered the mostly preferable substituent of silicon for such purpose. However, it has a counter effect on the strength/ductility balance of TRIP steel as a result of ferrite grain growth. Thereby, this study aimed to completely replace silicon by aluminum in the presence of vanadium in order to enhance the coatability of such grade of steel. Microstructure of the studied steel was examined by using optical microscope and FE-SEM. XRD analysis and tent-etching technique were performed to study the fractions and morphology of the retained austenite. Moreover, the influence of the selected parameters on the mechanical properties were investigated. Showcased results promoted the significant potential of aluminum and vanadium as a substituent to the conventional silicon-based TRIP steel. This substitution has a great influence on promoting the retained austenite stability and hence the mechanical performance of TRIP steel.
ISSN:2238-7854