Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells

AIM: To investigate the effect of DSX, an active component extracted from Erigeron breviscapus, on the voltage-gated outward K+ channel currents in rat retinal ganglion cells (RGCs) by using electrophysiological method, and to explore the possible mechanisms of DSX on optic nerve protection. METHOD...

Full description

Bibliographic Details
Main Authors: Shuo Yin, Zhong-Feng Wang, Jun-Guo Duan, Lu Ji, Xue-Jing Lu
Format: Article
Language:English
Published: Press of International Journal of Ophthalmology (IJO PRESS) 2015-12-01
Series:International Journal of Ophthalmology
Subjects:
Online Access:http://www.ijo.cn/en_publish/2015/6/20150604.pdf
Description
Summary:AIM: To investigate the effect of DSX, an active component extracted from Erigeron breviscapus, on the voltage-gated outward K+ channel currents in rat retinal ganglion cells (RGCs) by using electrophysiological method, and to explore the possible mechanisms of DSX on optic nerve protection. METHODS: Outward K+ currents were recorded by using whole-cell patch-clamp techniques on acutely isolated rat RGCs. Outward K+ currents were induced by a series of depolarizing voltage pulses from a holding potential of -70 mV to +20 mV in an increment of 10 mV. RESULTS: Extracellular application of DSX voltage-dependently suppressed both the steady-state and peak current amplitudes of outward K+ currents in rat RGCs. Furthermore, DSX reversibly and dose-dependently inhibited the amplitudes of outward K+ currents of the cells. At +20 mV membrane potential DSX at the concentrations of 0.02 g/L and 0.05 g/L showed no significant effects on the currents. In contrast, DSX at higher concentrations (0.1 g/L, 0.2 g/L and 0.5 g/L) significantly suppressed the current amplitudes. CONCLUSION: These results suggest that DSX reversibly and dose-dependently suppress outward K+ channel currents in rat RGCs, which may be one of the possible mechanisms underlying Erigeron breviscapus prevents vision loss and RGC damage caused by glaucoma.
ISSN:2222-3959
2227-4898