Management Zone Delineation for Site-Specific Fertilization in Rice Crop Using Multi-Temporal RapidEye Imagery

The objective of this research is to assess the potential of satellite imagery in detecting soil heterogeneity, with a focus on site-specific fertilization in rice. The basic hypothesis is that spectral variation would express soil fertility variations analogously. A 100-ha rice crop, located in the...

Full description

Bibliographic Details
Main Authors: Christos Karydas, Miltiadis Iatrou, George Iatrou, Spiros Mourelatos
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/16/2604
Description
Summary:The objective of this research is to assess the potential of satellite imagery in detecting soil heterogeneity, with a focus on site-specific fertilization in rice. The basic hypothesis is that spectral variation would express soil fertility variations analogously. A 100-ha rice crop, located in the Plain of Thessaloniki, Greece, was selected as the study area for the 2016 cropping season. Three RapidEye images were acquired during critical growth stages of rice cultivation from the previous year (2015). Management zones were delineated with image segmentation of a 15-band multi-temporal composite of the RapidEye images (three dates × five bands), using the Fractal Net Evolution Approach (FNEA) algorithm. Then, an equal number of soil samples were collected from the centroid of each management zone before seedbed preparation. The between-zone variation of the soil properties was found to be 33.7% on average, whereas the within-zone variation 18.2%. The basic hypothesis was confirmed, and moreover, it was proved that zonal applications reduced within-zone soil variation by 18.6% compared to conventional uniform applications. Finally, between-zone soil variation was significant enough to dictate differentiated fertilization recommendations per management zone by 24.5% for the usual inputs.
ISSN:2072-4292