Interactions between host and intestinal crypt-resided biofilms are controlled by epithelial fucosylation

Summary: As highly organized consortia of bacteria, biofilms have long been implicated in aggravating inflammation. However, our understanding regarding in vivo host-biofilm interactions in the complex tissue environments remains limited. Here, we show a unique pattern of crypt occupation by mucus-a...

Full description

Bibliographic Details
Main Authors: Xue-Kun Guo, Jiali Wang, Vincent P. van Hensbergen, Jintao Liu, Huji Xu, Xiaoyu Hu
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723007659
Description
Summary:Summary: As highly organized consortia of bacteria, biofilms have long been implicated in aggravating inflammation. However, our understanding regarding in vivo host-biofilm interactions in the complex tissue environments remains limited. Here, we show a unique pattern of crypt occupation by mucus-associated biofilms during the early stage of colitis, which is genetically dependent on bacterial biofilm-forming capacity and restricted by host epithelial α1,2-fucosylation. α1,2-Fucosylation deficiency leads to markedly augmented crypt occupation by biofilms originated from pathogenic Salmonella Typhimurium or indigenous Escherichia coli, resulting in exacerbated intestinal inflammation. Mechanistically, α1,2-fucosylation-mediated restriction of biofilms relies on interactions between bacteria and liberated fucose from biofilm-occupied mucus. Fucose represses biofilm formation and biofilm-related genes in vitro and in vivo. Finally, fucose administration ameliorates experimental colitis, suggesting therapeutic potential of fucose for biofilm-related disorders. This work illustrates host-biofilm interactions during gut inflammation and identifies fucosylation as a physiological strategy for restraining biofilm formation.
ISSN:2211-1247