Thermal Analyses of Active-Cooled Strut in RBCC Engine

Fuel-injection strut is an efficient way to increase the depth of fuel penetration and strengthen the mixing process of hot gas in supersonic combustor. With a validated numerical model, this article analyzed the effects of leading edge's radius, wall thickness and mass flow distribution on coo...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: EDP Sciences 2018-10-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/pdf/2018/05/jnwpu2018365p919.pdf
Description
Summary:Fuel-injection strut is an efficient way to increase the depth of fuel penetration and strengthen the mixing process of hot gas in supersonic combustor. With a validated numerical model, this article analyzed the effects of leading edge's radius, wall thickness and mass flow distribution on cooling efficiency of fuel-injection strut and proposed an optimizing strategy for active-cooled strut. Results showed that the larger radius of leading edge not only decreased the heat flux on the leading edge, but also has a negative effect on the aerodynamic performance of strut; and a thinner wall could enhance the cooling efficiency and uniformize the temperature distribution of the wedge; furthermore, the flow distribution of inlet coolant had a significant impact on the heat transfer and flow processes, an optimized way of flow distribution was obtained by comparing three different ways of distribution.
ISSN:1000-2758
2609-7125