Thermal Analyses of Active-Cooled Strut in RBCC Engine
Fuel-injection strut is an efficient way to increase the depth of fuel penetration and strengthen the mixing process of hot gas in supersonic combustor. With a validated numerical model, this article analyzed the effects of leading edge's radius, wall thickness and mass flow distribution on coo...
Format: | Article |
---|---|
Language: | zho |
Published: |
EDP Sciences
2018-10-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/pdf/2018/05/jnwpu2018365p919.pdf |
Summary: | Fuel-injection strut is an efficient way to increase the depth of fuel penetration and strengthen the mixing process of hot gas in supersonic combustor. With a validated numerical model, this article analyzed the effects of leading edge's radius, wall thickness and mass flow distribution on cooling efficiency of fuel-injection strut and proposed an optimizing strategy for active-cooled strut. Results showed that the larger radius of leading edge not only decreased the heat flux on the leading edge, but also has a negative effect on the aerodynamic performance of strut; and a thinner wall could enhance the cooling efficiency and uniformize the temperature distribution of the wedge; furthermore, the flow distribution of inlet coolant had a significant impact on the heat transfer and flow processes, an optimized way of flow distribution was obtained by comparing three different ways of distribution. |
---|---|
ISSN: | 1000-2758 2609-7125 |