Summary: | The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel spark-ignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine, the crankshaft of the engine was modified to generate different compression ratios of 8.5, 9.0, 9.4, 10.0, and 10.4. The biogas contained 60 and 40% methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>), respectively, while the hydrogen fractions used to enrich biogas were 10, 20, and 30% of the mixture by volume. The ignition timing is fixed at 350 CA°. The results indicate that the in-cylinder pressure, combustion temperature, and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio, NO<sub>x</sub> emissions increase proportionally, while CO<sub>2</sub> emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However, adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
|