Sherwood correlation for finger-test experiments
Finger-test experiments are frequently conducted in continuous-wear investigations of ceramic materials. However, mass transfer equations accurately representing these scenarios are not yet available, which can lead to erroneous estimation of dissolution-related parameters due to poor approximations...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-09-01
|
Series: | Results in Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590123022002808 |
_version_ | 1818480171047452672 |
---|---|
author | Jerónimo Guarco Burhanuddin Sandra Vollmann Harald Harmuth |
author_facet | Jerónimo Guarco Burhanuddin Sandra Vollmann Harald Harmuth |
author_sort | Jerónimo Guarco |
collection | DOAJ |
description | Finger-test experiments are frequently conducted in continuous-wear investigations of ceramic materials. However, mass transfer equations accurately representing these scenarios are not yet available, which can lead to erroneous estimation of dissolution-related parameters due to poor approximations. In this study, a Sherwood correlation for finger-test experiments was developed. The equation applies to rods or nearly cylindrical specimens that are rotated in a liquid contained in a cylindrical receptacle. The equation is derived from numerical results simulating the dissolution of ceramic materials in liquid slags, where the dissolution is dominated by mass transfer in the liquid. For these simulations, surface profiles from the experimental results were employed. Based on the derived equation, a methodology for the calculation of mass transfer coefficients for dissolution processes was designed that enables diffusivity determination. This equation is also suitable for heat transfer calculations. The equation is in agreement with the results obtained by simulation and other documented heat and mass transfer equation, for the latter the fit is poorer due to differences in the experiment configuration. |
first_indexed | 2024-12-10T11:19:52Z |
format | Article |
id | doaj.art-e1502e2cbbdb433182365d42d98ec8dd |
institution | Directory Open Access Journal |
issn | 2590-1230 |
language | English |
last_indexed | 2024-12-10T11:19:52Z |
publishDate | 2022-09-01 |
publisher | Elsevier |
record_format | Article |
series | Results in Engineering |
spelling | doaj.art-e1502e2cbbdb433182365d42d98ec8dd2022-12-22T01:51:01ZengElsevierResults in Engineering2590-12302022-09-0115100610Sherwood correlation for finger-test experimentsJerónimo Guarco0 Burhanuddin1Sandra Vollmann2Harald Harmuth3Corresponding author.; Chair of Ceramics, Montanuniversität Leoben, Peter-Tunner Straße 5, 8700, Leoben, AustriaChair of Ceramics, Montanuniversität Leoben, Peter-Tunner Straße 5, 8700, Leoben, AustriaChair of Ceramics, Montanuniversität Leoben, Peter-Tunner Straße 5, 8700, Leoben, AustriaChair of Ceramics, Montanuniversität Leoben, Peter-Tunner Straße 5, 8700, Leoben, AustriaFinger-test experiments are frequently conducted in continuous-wear investigations of ceramic materials. However, mass transfer equations accurately representing these scenarios are not yet available, which can lead to erroneous estimation of dissolution-related parameters due to poor approximations. In this study, a Sherwood correlation for finger-test experiments was developed. The equation applies to rods or nearly cylindrical specimens that are rotated in a liquid contained in a cylindrical receptacle. The equation is derived from numerical results simulating the dissolution of ceramic materials in liquid slags, where the dissolution is dominated by mass transfer in the liquid. For these simulations, surface profiles from the experimental results were employed. Based on the derived equation, a methodology for the calculation of mass transfer coefficients for dissolution processes was designed that enables diffusivity determination. This equation is also suitable for heat transfer calculations. The equation is in agreement with the results obtained by simulation and other documented heat and mass transfer equation, for the latter the fit is poorer due to differences in the experiment configuration.http://www.sciencedirect.com/science/article/pii/S2590123022002808Mass transferFinger testSherwood equationDissolutionRotating cylinder |
spellingShingle | Jerónimo Guarco Burhanuddin Sandra Vollmann Harald Harmuth Sherwood correlation for finger-test experiments Results in Engineering Mass transfer Finger test Sherwood equation Dissolution Rotating cylinder |
title | Sherwood correlation for finger-test experiments |
title_full | Sherwood correlation for finger-test experiments |
title_fullStr | Sherwood correlation for finger-test experiments |
title_full_unstemmed | Sherwood correlation for finger-test experiments |
title_short | Sherwood correlation for finger-test experiments |
title_sort | sherwood correlation for finger test experiments |
topic | Mass transfer Finger test Sherwood equation Dissolution Rotating cylinder |
url | http://www.sciencedirect.com/science/article/pii/S2590123022002808 |
work_keys_str_mv | AT jeronimoguarco sherwoodcorrelationforfingertestexperiments AT burhanuddin sherwoodcorrelationforfingertestexperiments AT sandravollmann sherwoodcorrelationforfingertestexperiments AT haraldharmuth sherwoodcorrelationforfingertestexperiments |