Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models

Energy poverty (EP) is becoming an increasingly important problem in the urban contexts of southern Europe. In Barcelona, EP indicators are higher than those of the European Union and are strongly associated with poor health status and high use of health services and medication, becoming a major pub...

Full description

Bibliographic Details
Main Authors: Marc Marí-Dell’Olmo, Laura Oliveras, Carlos Vergara-Hernández, Lucia Artazcoz, Carme Borrell, Mercè Gotsens, Laia Palència, María José López, Miguel A. Martinez-Beneito
Format: Article
Language:English
Published: Elsevier 2022-11-01
Series:Energy Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352484721014633
_version_ 1797902110265704448
author Marc Marí-Dell’Olmo
Laura Oliveras
Carlos Vergara-Hernández
Lucia Artazcoz
Carme Borrell
Mercè Gotsens
Laia Palència
María José López
Miguel A. Martinez-Beneito
author_facet Marc Marí-Dell’Olmo
Laura Oliveras
Carlos Vergara-Hernández
Lucia Artazcoz
Carme Borrell
Mercè Gotsens
Laia Palència
María José López
Miguel A. Martinez-Beneito
author_sort Marc Marí-Dell’Olmo
collection DOAJ
description Energy poverty (EP) is becoming an increasingly important problem in the urban contexts of southern Europe. In Barcelona, EP indicators are higher than those of the European Union and are strongly associated with poor health status and high use of health services and medication, becoming a major public health problem. EP is unevenly distributed in the population of Barcelona, according to axes of social stratification. However, its geographic distribution at the small-area level remains unknown because it cannot be directly estimated with the available information sources and commonly used methods. Therefore, the aim of this study was to analyze geographical inequalities in EP in Barcelona by estimating reliable small-area EP indicators and a composite indicator (index). We used a novel method that allowed us to obtain 6 EP indicators for the 73 Barcelona neighborhoods and an EP index from a principal component analysis of these indicators. We found major geographical inequalities in the distribution of EP in Barcelona. Many neighborhoods had significantly higher EP than the city average, and these areas made up 3 well-defined spatial clusters. Therefore, the estimated small-area indicators and index allowed identification of the most affected neighborhoods. These results indicate the need to prioritize these areas for local interventions to alleviate EP, and could also be used for policy making.
first_indexed 2024-04-10T09:12:36Z
format Article
id doaj.art-e153cdd4fc4b4e818bab3d343c1a78fd
institution Directory Open Access Journal
issn 2352-4847
language English
last_indexed 2024-04-10T09:12:36Z
publishDate 2022-11-01
publisher Elsevier
record_format Article
series Energy Reports
spelling doaj.art-e153cdd4fc4b4e818bab3d343c1a78fd2023-02-21T05:09:49ZengElsevierEnergy Reports2352-48472022-11-01812491259Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial modelsMarc Marí-Dell’Olmo0Laura Oliveras1Carlos Vergara-Hernández2Lucia Artazcoz3Carme Borrell4Mercè Gotsens5Laia Palència6María José López7Miguel A. Martinez-Beneito8Agència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Correspondence to: Agència de Salut Pública de Barcelona, Plaça Lesseps 1, 08023 Barcelona, Spain.Agència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Catalonia, SpainVaccine Research Unit, FISABIO, Av Cataluña 21, 46020, Valencia, SpainAgència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Catalonia, SpainAgència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Catalonia, SpainAgència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, SpainAgència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, 28029, Madrid, SpainAgència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Catalonia, Spain; Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 77, 08041, Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Catalonia, SpainDepartament d’Estadística i Investigaciò Operativa, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain; Unitat Mixta de recerca en mètodes estadístics per a dades biomédiques i sanitàries, UV-FISABIO, Dr. Moliner 50, 46100 Burjassot, Valencia, SpainEnergy poverty (EP) is becoming an increasingly important problem in the urban contexts of southern Europe. In Barcelona, EP indicators are higher than those of the European Union and are strongly associated with poor health status and high use of health services and medication, becoming a major public health problem. EP is unevenly distributed in the population of Barcelona, according to axes of social stratification. However, its geographic distribution at the small-area level remains unknown because it cannot be directly estimated with the available information sources and commonly used methods. Therefore, the aim of this study was to analyze geographical inequalities in EP in Barcelona by estimating reliable small-area EP indicators and a composite indicator (index). We used a novel method that allowed us to obtain 6 EP indicators for the 73 Barcelona neighborhoods and an EP index from a principal component analysis of these indicators. We found major geographical inequalities in the distribution of EP in Barcelona. Many neighborhoods had significantly higher EP than the city average, and these areas made up 3 well-defined spatial clusters. Therefore, the estimated small-area indicators and index allowed identification of the most affected neighborhoods. These results indicate the need to prioritize these areas for local interventions to alleviate EP, and could also be used for policy making.http://www.sciencedirect.com/science/article/pii/S2352484721014633Energy povertyFuel povertyIndexGeographical inequalitiesMultivariate analysisBayesian model
spellingShingle Marc Marí-Dell’Olmo
Laura Oliveras
Carlos Vergara-Hernández
Lucia Artazcoz
Carme Borrell
Mercè Gotsens
Laia Palència
María José López
Miguel A. Martinez-Beneito
Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
Energy Reports
Energy poverty
Fuel poverty
Index
Geographical inequalities
Multivariate analysis
Bayesian model
title Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
title_full Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
title_fullStr Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
title_full_unstemmed Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
title_short Geographical inequalities in energy poverty in a Mediterranean city: Using small-area Bayesian spatial models
title_sort geographical inequalities in energy poverty in a mediterranean city using small area bayesian spatial models
topic Energy poverty
Fuel poverty
Index
Geographical inequalities
Multivariate analysis
Bayesian model
url http://www.sciencedirect.com/science/article/pii/S2352484721014633
work_keys_str_mv AT marcmaridellolmo geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT lauraoliveras geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT carlosvergarahernandez geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT luciaartazcoz geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT carmeborrell geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT mercegotsens geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT laiapalencia geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT mariajoselopez geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels
AT miguelamartinezbeneito geographicalinequalitiesinenergypovertyinamediterraneancityusingsmallareabayesianspatialmodels