Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses

A thermal volatility technique is used to provide indirect information about the chemical composition of the aerosol involved in cirrus cloud formation. The fraction of particles that disappears after being heated to 125°C is termed volatile and the fraction that disappears between 125 and 2...

Full description

Bibliographic Details
Main Authors: M. Seifert, J. Ström, R. Krejci, A. Minikin, A. Petzold, J.-F. Gayet, H. Schlager, H. Ziereis, U. Schumann, J. Ovarlez
Format: Article
Language:English
Published: Copernicus Publications 2004-01-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/4/1343/2004/acp-4-1343-2004.pdf
_version_ 1818096244806909952
author M. Seifert
M. Seifert
J. Ström
R. Krejci
A. Minikin
A. Petzold
J.-F. Gayet
H. Schlager
H. Ziereis
U. Schumann
J. Ovarlez
author_facet M. Seifert
M. Seifert
J. Ström
R. Krejci
A. Minikin
A. Petzold
J.-F. Gayet
H. Schlager
H. Ziereis
U. Schumann
J. Ovarlez
author_sort M. Seifert
collection DOAJ
description A thermal volatility technique is used to provide indirect information about the chemical composition of the aerosol involved in cirrus cloud formation. The fraction of particles that disappears after being heated to 125&deg;C is termed volatile and the fraction that disappears between 125 and 250&deg;C is termed semi-volatile. Particles that still remain after being heated to 250&deg;C make up the non-volatile fraction. The thermal composition of residual particles remaining from evaporated cirrus crystals is presented and compared to interstitial aerosol particles (non-activated particles in between the cirrus crystals) for two temperature regimes (cold: T< -38&deg;C, warm: -38&le;T< -23&deg;C), based on in-situ observations. The observations were conducted in cirrus clouds in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes during the INCA project. In the cold temperature regime, the non-volatile fraction of the residual particles was typically in the range 10 to 30% in the NH and 30 to 40% in the SH. In the warm temperature regime, the non-volatile residual fraction was typically 10 to 30% (NH) and 20 to 40% (SH). At high crystal number densities the non-volatile fraction in both temperature regimes was even higher: in the range of 30 to 40% (NH) and 40 to 50% (SH). The semi-volatile fraction was typically less than 10% in both hemispheres, causing the volatile fraction to essentially be a complement to the non-volatile fraction. In terms of the fractioning into the three types of particles, the SH cold case is clearly different compared to the other three cases (the two warm cases and the cold NH case), which share many features. In the NH data the distribution of different particle types does not seem to be temperature dependent. In all the cases, the non-volatile fraction is enriched in the residual particles compared to the fractions observed for the interstitial particles. This enrichment corresponds to about 15 (NH) and 30 (SH) percent units in the two cold cases and to 15-25 (NH) and 25-35 (SH) percent units in the two warm cases. In the NH cold case, there is a clear relation between the fractions observed in the interstitial particles and what is observed in the residual particles. The observed large fractions of non-volatile particles show that particles forming ice crystals are not entirely made up of water-soluble sulfate particles.
first_indexed 2024-12-10T23:01:33Z
format Article
id doaj.art-e15e7516797b482c8198b06a9aba7f0c
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-10T23:01:33Z
publishDate 2004-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-e15e7516797b482c8198b06a9aba7f0c2022-12-22T01:30:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242004-01-014513431353Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air massesM. SeifertM. SeifertJ. StrömR. KrejciA. MinikinA. PetzoldJ.-F. GayetH. SchlagerH. ZiereisU. SchumannJ. OvarlezA thermal volatility technique is used to provide indirect information about the chemical composition of the aerosol involved in cirrus cloud formation. The fraction of particles that disappears after being heated to 125&deg;C is termed volatile and the fraction that disappears between 125 and 250&deg;C is termed semi-volatile. Particles that still remain after being heated to 250&deg;C make up the non-volatile fraction. The thermal composition of residual particles remaining from evaporated cirrus crystals is presented and compared to interstitial aerosol particles (non-activated particles in between the cirrus crystals) for two temperature regimes (cold: T< -38&deg;C, warm: -38&le;T< -23&deg;C), based on in-situ observations. The observations were conducted in cirrus clouds in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes during the INCA project. In the cold temperature regime, the non-volatile fraction of the residual particles was typically in the range 10 to 30% in the NH and 30 to 40% in the SH. In the warm temperature regime, the non-volatile residual fraction was typically 10 to 30% (NH) and 20 to 40% (SH). At high crystal number densities the non-volatile fraction in both temperature regimes was even higher: in the range of 30 to 40% (NH) and 40 to 50% (SH). The semi-volatile fraction was typically less than 10% in both hemispheres, causing the volatile fraction to essentially be a complement to the non-volatile fraction. In terms of the fractioning into the three types of particles, the SH cold case is clearly different compared to the other three cases (the two warm cases and the cold NH case), which share many features. In the NH data the distribution of different particle types does not seem to be temperature dependent. In all the cases, the non-volatile fraction is enriched in the residual particles compared to the fractions observed for the interstitial particles. This enrichment corresponds to about 15 (NH) and 30 (SH) percent units in the two cold cases and to 15-25 (NH) and 25-35 (SH) percent units in the two warm cases. In the NH cold case, there is a clear relation between the fractions observed in the interstitial particles and what is observed in the residual particles. The observed large fractions of non-volatile particles show that particles forming ice crystals are not entirely made up of water-soluble sulfate particles.http://www.atmos-chem-phys.net/4/1343/2004/acp-4-1343-2004.pdf
spellingShingle M. Seifert
M. Seifert
J. Ström
R. Krejci
A. Minikin
A. Petzold
J.-F. Gayet
H. Schlager
H. Ziereis
U. Schumann
J. Ovarlez
Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
Atmospheric Chemistry and Physics
title Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
title_full Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
title_fullStr Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
title_full_unstemmed Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
title_short Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses
title_sort thermal stability analysis of particles incorporated in cirrus crystals and of non activated particles in between the cirrus crystals comparing clean and polluted air masses
url http://www.atmos-chem-phys.net/4/1343/2004/acp-4-1343-2004.pdf
work_keys_str_mv AT mseifert thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT mseifert thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT jstrom thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT rkrejci thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT aminikin thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT apetzold thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT jfgayet thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT hschlager thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT hziereis thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT uschumann thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses
AT jovarlez thermalstabilityanalysisofparticlesincorporatedincirruscrystalsandofnonactivatedparticlesinbetweenthecirruscrystalscomparingcleanandpollutedairmasses