Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants

Abstract Background Fusarium wilt biocontrol using endophytic microorganisms may represent a potentially attractive and environmentally safe alternative since endophytes could better limit disease incidence and severity through inhibition of the systemic fungus progress. Main body of the abstract Tw...

Full description

Bibliographic Details
Main Authors: Rania Aydi-Ben-Abdallah, Hayfa Jabnoun-Khiareddine, Mejda Daami-Remadi
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Egyptian Journal of Biological Pest Control
Subjects:
Online Access:http://link.springer.com/article/10.1186/s41938-020-00313-1
Description
Summary:Abstract Background Fusarium wilt biocontrol using endophytic microorganisms may represent a potentially attractive and environmentally safe alternative since endophytes could better limit disease incidence and severity through inhibition of the systemic fungus progress. Main body of the abstract Twenty-three endophytic bacterial isolates, naturally associated with Solanum sodomaeum and Solanum bonariense, were evaluated for their ability to control Fusarium wilt of tomato induced by Fusarium oxysporum f. sp. lycopersici (FOL) and to promote plant growth. Selected endophytic isolates were screened in vivo, using the root dipping and the culture substrate drenching methods. The most bioactive isolates were subjected to morphological and biochemical characterization and subsequent identification through 16S rDNA sequencing genes. Seven isolates (Stenotrophomonas maltophilia S23, S24, S26 and S28; Bacillus sp. SV81; Azotobacter chroococcum S11; and Serratia marcescens S14) were found to be the most efficient in reducing disease severity by 82–96% over control. Treatments with these isolates led to a significant enhancement in growth parameters, estimated at 45.5–61 and 24.2–70.5% than the control, in tomato plants infected or not with FOL, respectively. Diffusible and volatile metabolites released from bacterial cultures had significantly limited FOL radial growth. All isolates were positive for indole-3-acetic acid (IAA) production. S. marcescens S14, S. maltophilia S28, and Bacillus sp. SV81 exhibited a positive phosphate solubilization activity. Production of chitinase, protease, pectinase, and hydrogen cyanide were also investigated. Short conclusion This study clearly demonstrated that endophytic bacteria recovered from these 2 Solanum species can be explored as promising biocontrol agents active against FOL and are able to enhance tomato growth.
ISSN:2536-9342