dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]

Dendrograms are graphical representations of binary tree structures resulting from agglomerative hierarchical clustering. In Life Science, a cluster heat map is a widely accepted visualization technique that utilizes the leaf order of a dendrogram to reorder the rows and columns of the data table. T...

Full description

Bibliographic Details
Main Authors: Ryo Sakai, Raf Winand, Toni Verbeiren, Andrew Vande Moere, Jan Aerts
Format: Article
Language:English
Published: F1000 Research Ltd 2014-07-01
Series:F1000Research
Subjects:
Online Access:http://f1000research.com/articles/3-177/v1
_version_ 1818506023447560192
author Ryo Sakai
Raf Winand
Toni Verbeiren
Andrew Vande Moere
Jan Aerts
author_facet Ryo Sakai
Raf Winand
Toni Verbeiren
Andrew Vande Moere
Jan Aerts
author_sort Ryo Sakai
collection DOAJ
description Dendrograms are graphical representations of binary tree structures resulting from agglomerative hierarchical clustering. In Life Science, a cluster heat map is a widely accepted visualization technique that utilizes the leaf order of a dendrogram to reorder the rows and columns of the data table. The derived linear order is more meaningful than a random order, because it groups similar items together. However, two consecutive items can be quite dissimilar despite proximity in the order. In addition, there are 2n-1 possible orderings given n input elements as the orientation of clusters at each merge can be flipped without affecting the hierarchical structure. We present two modular leaf ordering methods to encode both the monotonic order in which clusters are merged and the nested cluster relationships more faithfully in the resulting dendrogram structure. We compare dendrogram and cluster heat map visualizations created using our heuristics to the default heuristic in R and seriation-based leaf ordering methods. We find that our methods lead to a dendrogram structure with global patterns that are easier to interpret, more legible given a limited display space, and more insightful for some cases. The implementation of methods is available as an R package, named ”dendsort”, from the CRAN package repository. Further examples, documentations, and the source code are available at [https://bitbucket.org/biovizleuven/dendsort/].
first_indexed 2024-12-10T21:58:49Z
format Article
id doaj.art-e16467140ea249699dc8bdd2aba776bc
institution Directory Open Access Journal
issn 2046-1402
language English
last_indexed 2024-12-10T21:58:49Z
publishDate 2014-07-01
publisher F1000 Research Ltd
record_format Article
series F1000Research
spelling doaj.art-e16467140ea249699dc8bdd2aba776bc2022-12-22T01:31:57ZengF1000 Research LtdF1000Research2046-14022014-07-01310.12688/f1000research.4784.15108dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]Ryo Sakai0Raf Winand1Toni Verbeiren2Andrew Vande Moere3Jan Aerts4iMinds Medical IT, KU Leuven, 3001, BelgiumiMinds Medical IT, KU Leuven, 3001, BelgiumiMinds Medical IT, KU Leuven, 3001, BelgiumDepartment of Architecture, Research[x]Design, KU Leuven, 3001, BelgiumiMinds Medical IT, KU Leuven, 3001, BelgiumDendrograms are graphical representations of binary tree structures resulting from agglomerative hierarchical clustering. In Life Science, a cluster heat map is a widely accepted visualization technique that utilizes the leaf order of a dendrogram to reorder the rows and columns of the data table. The derived linear order is more meaningful than a random order, because it groups similar items together. However, two consecutive items can be quite dissimilar despite proximity in the order. In addition, there are 2n-1 possible orderings given n input elements as the orientation of clusters at each merge can be flipped without affecting the hierarchical structure. We present two modular leaf ordering methods to encode both the monotonic order in which clusters are merged and the nested cluster relationships more faithfully in the resulting dendrogram structure. We compare dendrogram and cluster heat map visualizations created using our heuristics to the default heuristic in R and seriation-based leaf ordering methods. We find that our methods lead to a dendrogram structure with global patterns that are easier to interpret, more legible given a limited display space, and more insightful for some cases. The implementation of methods is available as an R package, named ”dendsort”, from the CRAN package repository. Further examples, documentations, and the source code are available at [https://bitbucket.org/biovizleuven/dendsort/].http://f1000research.com/articles/3-177/v1Bioinformatics
spellingShingle Ryo Sakai
Raf Winand
Toni Verbeiren
Andrew Vande Moere
Jan Aerts
dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
F1000Research
Bioinformatics
title dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
title_full dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
title_fullStr dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
title_full_unstemmed dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
title_short dendsort: modular leaf ordering methods for dendrogram representations in R [v1; ref status: indexed, http://f1000r.es/3xw]
title_sort dendsort modular leaf ordering methods for dendrogram representations in r v1 ref status indexed http f1000r es 3xw
topic Bioinformatics
url http://f1000research.com/articles/3-177/v1
work_keys_str_mv AT ryosakai dendsortmodularleaforderingmethodsfordendrogramrepresentationsinrv1refstatusindexedhttpf1000res3xw
AT rafwinand dendsortmodularleaforderingmethodsfordendrogramrepresentationsinrv1refstatusindexedhttpf1000res3xw
AT toniverbeiren dendsortmodularleaforderingmethodsfordendrogramrepresentationsinrv1refstatusindexedhttpf1000res3xw
AT andrewvandemoere dendsortmodularleaforderingmethodsfordendrogramrepresentationsinrv1refstatusindexedhttpf1000res3xw
AT janaerts dendsortmodularleaforderingmethodsfordendrogramrepresentationsinrv1refstatusindexedhttpf1000res3xw